

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

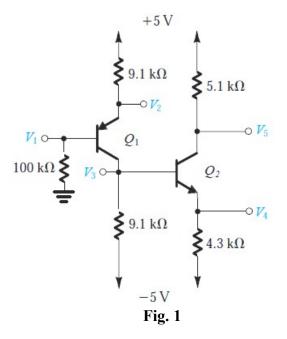
Program: B Tech (EE, EE-BCT)	Semester – III	
Subject (Course): Electronic Devices and Circuits-I	Max. Marks	: 100
Course Code: ELEG218	Duration	: 3 Hrs
No. of page/s: 3		

Instructions:

- Attempt all questions.
- There is an internal choice for Q.No- (9) and (11) (i.e. attempt only one part of these question either (a) or (b))
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

Section-A (5x4 = 20 Marks)

- 1. Describe the conditions established by forward- and reverse-bias conditions on a p-n junction diode and how the resulting current is affected.
- 2. Find the intrinsic carrier concentration of Germanium, if its intrinsic resistivity at 300 °K is 0.47 ohm-m. It is given that the electronic charge is 1.6 x 10^{-19} coulombs, and that electron and hole mobilities at 300 °K are 0.39 and 0.19 m²/(V.sec)
- 3. List the three sources of instability of collector current in BJT. Define three stability factors.
- 4. The leakage currents of a transistor, with usual notations, are $I_{CEO} = 410 \ \mu A$ and $I_{CBO} = 5\mu A$, the base current I_B being 30 μA . Calculate the collector current.
- 5. Give reasons why MOSFETs dominate in VLSI over BJT.

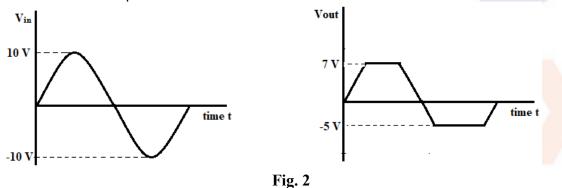

Section-B (4x10 = 40 Marks)

6. (a) A half wave rectifier having a diode with an internal resistance of 50 Ω is to supply power to a 1 k Ω load from 110 V rms source of supply, calculate peak load current; dc load current; dc diode voltage; ac load current

(b) A 5.2 V Zener diode has a maximum power dissipation of 260 mW. It maintains a constant voltage when the current though the diode does not fall below 10% of the maximum permissible currents. A 15 V supply is given to the Zener through a series resistor R. Find the range for R so that the Zener maintains its constant voltage. Find the new range when the diode is loaded by 50 Ω load.

- 7. Define stabilization technique and compensation techniques to maintain the operating point of transistor in active region. Also explain diode compensation technique for V_{BE}
- 8. Explain the basic construction and operation of JFET.

9. (a) For the circuit shown in Fig. 1, find the labeled node voltages for: (a) $\beta = \infty$ (b) $\beta = 100$


Or

(b) Consider an npn transistor for which $\beta_F = 100$, $\alpha_R = 0.1$, and $I_S = 10^{-15}$ A. (i) If the transistor is operated in the forward active mode with $I_B = 10 \ \mu$ A and $V_{CB} = 1$ V, find V_{BE} , I_C , and I_E

(ii) Now, operate the transistor in the reverse active mode with a forward-bias voltage V_{BC} equal to the value of V_{BE} found in (i) and with $V_{EB} = 1$ V. Find I_C, I_B, and I_E

Section-C (2x20=40 Marks)

10. (a) Design a circuit using two diodes, one resistor and two voltage sources that would convert the input signal (V_{in}) to the output voltage (V_{out}) as shown in Fig. 2 the resistor value need not be specified.

(b) Design a voltage-divider bias network shown in Fig. 3 using a depletion-type MOSFET with $I_{DSS} = 8$ mA and $V_P = -i$ 3 V to have a Q -point at $I_{DQ} = 2.5$ mA using a supply of 20 V. In addition, set $V_G = 4$ V and use $R_D = 8R_S$ with $R_2 = 10$ MQ

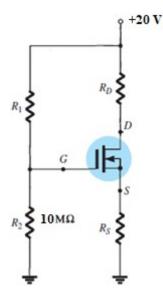
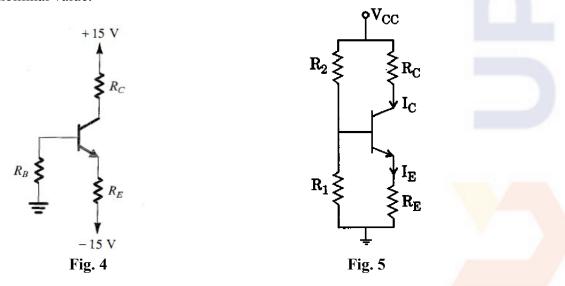



Fig. 3

11. (a) It is required to design the circuit in Fig. 4 so that a current of 1 mA is established in the emitter and a voltage of +5 V appears at the collector. The transistor type used has a nominal β of 100. However, the β value can be as low as 50 and as high as 150. Your design should ensure that the specified emitter current is obtained when $\beta = 100$ and that at the extreme values of β the emitter current does not change by more than 10% of its nominal value.

Or

(b) Design a self-biasing circuit shown in Fig. 5 such that $V_{CC} = 8 \text{ V}$, $I_C = 5 \text{ mA}$, $V_E = 6 \text{ V}$, $\beta = 200$ and stability factor S = 10.

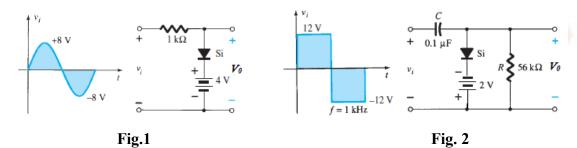
UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

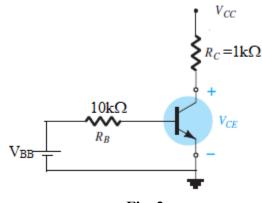
Program: B Tech (EE, EE-BCT)	Semester – III
Subject (Course): Electronic Devices and Circuits-I	Max. Marks
Course Code : ELEG218	Duration
No. of page/s:	

Instructions:


- Attempt all questions.
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

Section-A (4x5 = 20 Marks)

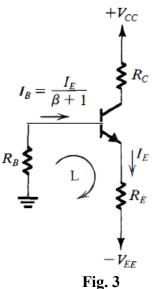
- 1. The intrinsic resistivity of germanium at 300 K is 47 ohm-cm. What is its intrinsic carrier concentration? Also, calculate the drift velocity of holes and of electrons for an electric field E = 100 V/cm. Given : $\mu_n = 0 = 3.9$ m²/V sec and $\mu_p = 0.19$ m²/V sec. (Electronic chare $q = 1.6x \ 10^{-19}$ C)
- 2. Describe how you will remember the forward- and reverse-bias states of the p n junction diode. That is, how will you remember which potential (positive or negative) is applied to which terminal?
- 3. Discuss the thermal runaway in BJTs.
- 4. Explain in your own words why the application of a positive voltage to the gate of an n-channel depletion-type MOSFET will result in a drain current exceeding I_{DSS} .


Section-B (4x10 = 40 Marks)

5. For the circuits shown in **Fig. 1** and **Fig. 2**, sketch and explain the output waveforms. Assume the diodes are ideal.

: 100 : 3 Hrs

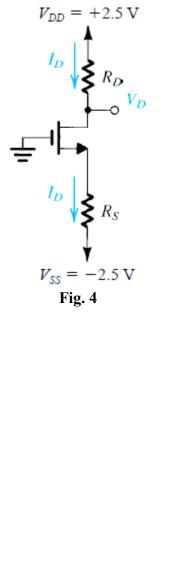
- 6. Sketch and explain the output V-I characteristics of an NPN transistor in commonemitter operation and indicate there on the different regions of importance.
- 7. What do you mean by 'saturation' of a transistor? In the circuit shown in **Fig. 2**, determine V_{BB} to saturate the transistor. Assume $V_{CEsat} = 0.1$ V, $V_{E,sat} = 0.6$ V and $\beta = 50$.



- Fig. 2
- 8. Draw and explain the drain and transfer characteristics of a n-channel enhancement type MOSFET. What is meant by threshold voltage? Discuss three different ways by which the threshold voltage can be reduced.

Section-C (2x20=40 Marks)

- 9. Consider the two-supply bias arrangement shown in **Fig. 3** using ± 3 V supplies. It is required to design the circuit so that $I_C = 3$ mA and V_C is placed midway between V_{CC} and V_E .
 - (a) For $\beta = \infty$, what values of R_E and R_C are required?


(b) If the BIT is specified to have a minimum β of 90, find the largest value for R_B consistent with the need to limit the voltage drop across it to one-tenth the voltage drop across R_E .

10. (a) A simple full wave bridge rectifier circuit has an input voltage of 240 V a.c. r.m.s. Assume the diodes to be ideal. Find the output d.c. current, d.c. voltage, r.m.s. values of output currents and voltages and the peak inverse voltage that appears across the non- conducting diode. Assume load resistance to be $10k\Omega$.

(b) Design the circuit of **Fig. 4** to establish a drain current of 0.25 mA and a drain voltage of 0 V. The MOSFET has $V_T = 1$ V, $\mu_n C_{ox} = 60 \ \mu \text{A/V}^2$, $L = 3 \ \mu \text{m}$, and $W = 100 \ \mu \text{m}$.

