UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017
Program: B Tech.(Mechatronics Engineering)
Subject (Course): Analog and Digital Electronics
Semester -III
Course Code :GNEG291
Max. Marks : 100
Duration: 3 Hrs
No. of page/s:

NOTE: Attempt all questions

> Part A
$[5 \times 4=20]$

1. Simplify the Boolean Expression $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(1,3,7,11,15)+\sum \mathrm{d}(0,2,5)$ with the help of K-Map.
2. Realize EX-NOR gate from NAND Gate and draw its truth table by verifying the Boolean expression.
3. Convert from one number system to another.
a. $(37.4)_{16}=(\quad \text { ? })_{10}$
b. $(\mathrm{ECE})_{16}=(\text { ? })_{10}$
c. $(754.23)_{8}=(\text { ? })_{2}$
d. $(\mathrm{FACE})_{16}=(\text { ? })_{8}$
4. In a 4-bit ripple counter propagation delay of ripple counter is 25 ns then maximum clock frequency that can be applied to the counter is \qquad ?

Part B
$[10 \times 4=40]$
5. Implement 4-bit Look Ahead Carry Adder with the help of AND-OR-EXOR gates and if all logic gates have propagation delay, then calculate the delay at Carry and Sum.
6. Implement $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,1,5,6,7)$ using 4 x 1 MULTIPLEXER with A and C as control variable.
7. Develop Full Adder using 3x8 Decoder and draw its logic diagram.
8. Determine $\mathrm{V}_{\text {out }}$ for the two connections shown in below Figure. Assume $\mathrm{V}_{1}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}$ $=2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{b}}=3 \mathrm{~V}$.

Part C
9. A clocked $\mathrm{X}-\mathrm{Y}$ flip flop is defined with two inputs, X and Y is in addition to the clock input. The flip flop functions as follows:

If $X Y=00$, the flip flop changes state with each clock pulse.
If $\mathrm{XY}=01$, the flip flop state Q becomes ' 1 ' with the next clock pulse.
If $X Y=10$, the flip flop state Q becomes ' 0 ' with the next clock pulse.
If $X Y=11$, the change of state occurs with the clock pulse.
a. Write a truth table for the XY flip flop.
b. Write the Excitation tables for the XY flip flop.
c. It is desirable to convert a J-K flip flop into X-Y flip flop by adding some external gates, if necessary. Design a circuit to show how you will implement X-Y flip flop using J-K flip flop.
10. Design a circuit using op-amp to produce a square wave output whose output does not have any stable state and the Output has two Quasi-Stable states where output keeps on changing its own from 1state to another state and Vice Versa.

Roll No:
 UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017
Program: B Tech.(Mechatronics Engineering)
Subject (Course): Analog and Digital Electronics
Course Code :GNEG291
emester -III
No. of page/s:

NOTE: Attempt all questions

Part A

1. Convert from one number system to another.
a. $(37.4)_{16}=(\quad \text { ? })_{10}$
b. $(\mathrm{FACE})^{16}$ $=(\text { ? })_{10}$
c. $(754.23)_{8}=(?)_{2}$
d. $(\mathrm{CAD})_{16}=(\text { ? })_{8}$
2. Simplify the Boolean Expression $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(1,3,7,11,15)+\sum \mathrm{d}(0,2,5)$ using KMap.
3. Realize EX-NOR gate from NAND Gate and draw its truth table by verifying the Boolean expression.
4. In a 4-bit ripple counter propagation delay of ripple counter is 25 ns then maximum clock frequency that can be applied to the counter is \qquad

Part B

5. Implement 4-bit Look Ahead Carry Adder with the help of AND-OR-EXOR gates and if all logic gates have propagation delay, then calculate the delay at Carry and Sum.
6. Implement $f(A, B, C)=\sum m(0,1,5,6,7)$ using 4×1 MULTIPLEXER with A and C as control variable.
7. Determine $\mathrm{V}_{\text {out }}$ for the two connections shown in below Figure. Assume $\mathrm{V}_{1}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=$ 2 V and $\mathrm{V}_{\mathrm{b}}=3 \mathrm{~V}$.

8. Develop Full Adder using 3×8 Decoder and draw its logic diagram.

Part C

$[2 \times 20=40]$
9. Design a circuit using op-amp to produce a square wave output whose output does not have any stable state and the Output has two Quasi-Stable states where output keeps on changing its own from 1state to another state and Vice Versa.
10. A new clocked $\mathrm{X}-\mathrm{Y}$ flip flop is defined with two inputs, X and Y is in addition to the clock input. The flip flop functions as follows:

If $X Y=00$, the flip flop changes state with each clock pulse.
If $\mathrm{XY}=01$, the flip flop state Q becomes ' 1 ' with the next clock pulse.
If $\mathrm{XY}=10$, the flip flop state Q becomes ' 0 ' with the next clock pulse.
If $\mathrm{XY}=11$, the change of state occurs with the clock pulse.
a. Write a truth table for the XY flip flop.
b. Write the Excitation table for the XY flip flop.
c. It is desirable to convert a J-K flip flop into X-Y flip flop by adding some external gates, if necessary. Design a circuit to show how you will implement in X-Y flip flop using J-K flip flop.

