## 1) UPES

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## End Semester Examination, December 2017

Program: B.Tech-Electrical Engineering
Subject (Course): Analog \& Digital Electronics
Course Code :ELEG-216
No. of page/s: 03

Semester - III
Max. Marks : 100
Duration : 3 Hrs
都

## SECTION-A

1. Draw and explain the circuit diagram of a diode clipper to clip a 5 V sine wave input signal at +2 V .
2. Sketch the output wave form of the following figure for a sine wave input with a peak value of 30 V . Consider the diode to be $\mathrm{Si}, \mathrm{Ge}$ and ideal diode cases.

3. A Digital system is to be designed in which month of the year is given as the four bit input. January is treated as ' 0000 ', February as ' 0001 ' and so on. The output of the system should be ' 1 ' for the months containing 31 days. Consider the output of other extra inputs as don't care.
i. Write the truth table and Boolean expression in SOP form
ii. Using K-Map minimize the Boolean function
iii. Use $3 \times 8$ decoder to implement the output of the system
4. In the Common Emitter amplifier shown, the transistor has a forward current gain of 100,
and a Base to Emitter voltage of 0.6 V . Derive the value for $\mathrm{R}_{1}$ and $\mathrm{R}_{\mathrm{C}}$ such that the transistor has a Collector current of 1 mA and Collector to Emitter voltage of 2.5 V .

|  |  |  |
| :---: | :---: | :---: |
| 7. | Construct a Parallel In Serial Out shift register for the graph shown below and derive the output graph with the help of the table. Consider the data to be loaded as $\mathrm{D}_{0} \mathrm{D}_{1} \mathrm{D}_{2} \mathrm{D}_{3}=1010$. | [10] |
| 8. | Design a DC-Power supply with the help of a Bridge rectifier and П- Filter. An AC Power supply of 230 V is applied to the Bridge rectifier through a transformer of turn's ratio 10:1. Find the DC output voltage, Peak Inverse voltage of the diode, RMS voltage, Efficiency and Ripple factor. | [10] |
|  | SECTION C |  |
| 9. | i. Develop a fixed bias circuit for the Load line analysis carried out in the figure. Consider $\beta=200, \mathrm{~V}_{\mathrm{BB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. <br> ii. Implement the following Boolean function by using 2X1 Multiplexer's. $\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(1,2,4,7) ; \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(3,5,6,7)$ | [10+10] |
|  |  |  |



Roll No:

## 1) UPES

# UNIVERSITY OF PETROLEUM AND ENERGY STUDIES 

## End Semester Examination, December 2017

Program: B.Tech-Electrical Engineering
Subject (Course): Analog \& Digital Electronics
Semester - III
Course Code :ELEG-216
Max. Marks : 100

No. of page/s: 02

## SECTION-A

| SECTION-A |  |  |
| :---: | :---: | :---: |
| 1. | Explain all the types of clippers with neat sketch and sketch the output for the following figure | [5] |
| 2. | Define a clamper circuit, mention the applications. With neat sketch explain the action of <br> (i) Positive clamper <br> (ii) Negative clamper. | [5] |
| 3. | Draw the Internal structure of an 8X1 Multiplexer and write its equation. | [5] |
| 4. | What is race around condition and how do we eliminate by using Master-Slave JK FlipFlop. | [5] |
|  | SECTION B |  |
| 5. | Brief out the timing parameters of the Flipflop's with neat sketch <br> i. Propagation Delay <br> ii. Set-up time <br> iii. Hold time <br> iv. Maximum Clock Frequency | [10] |
| 6. | In the Common Emitter amplifier shown, the transistor has a forward current gain of 100, and a Base to Emitter voltage of 0.6 V . Derive the value for $\mathrm{R}_{1}$ and $\mathrm{R}_{\mathrm{C}}$ such that the transistor has a Collector current of 1 mA and Collector to Emitter voltage of 2.5 V . | [10] |


|  |  |
| :--- | :--- | :--- | :--- |



