Roll No:
RUMPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B. Tech (Civil)
Subject (Course): Structural Analysis II
Course Code : CIVL 3003
No. of page/s: 3

Semester - V
Max. Marks : 100
Duration : 3 Hrs
Paper: I

NOTE: Answer all questions from Part-A. Answer all questions from Part-B. Answer both questions from part-C. Missing data should be suitably assumed \& mention clearly

PART - A
Q. 1 Explain Muller Breslau principle with a suitable example

4 Marks
CO2
Q. 2 Differentiate between flexibility \& stiffness matrix.

4 Marks
CO3
Q. 3 Explain (i) Shape Factor (ii) Plastic Hinge

4 Marks
CO4
Q. 4 In a fixed beam of length L, if one end sinks by δ, what are moments \& reactions induced at both ends?

4 Marks
CO 2
Q. 5 Write difference between portal \& cantilever method of multistoried frames. 4 Marks CO2

PART - B

Q. 6 Analyze the Continuous beam shown in figure below by Flexibility method. Draw B.M.D \& S.F.D for the Same.

10 Marks
CO3

Q. 7 Analyze the frame shown in figure below by Stiffness method. Draw B.M.D \& S.F.D for the same.

Q. 8 Analyze the beam shown in figure below by Slope deflection method. Draw B.M.D \& S.F.D. The mid support B settles by 8 mm .

10 Marks
CO2

Q. 9 Analyze the beam shown in figure below by Moment distribution method. Draw B.M.D \& S.F.D for the same.

10 Marks
CO2

OR

Q. 10 Analyze the beam shown in figure below by Consistent Deformation method. Draw B.M.D \& S.F.D for the same. Take M_{A} \& M_{B} as redundant.

10 Marks $\quad \mathrm{CO} 1 \& \mathrm{CO} 2$

$\underline{\text { PART - C }}$
Q. 11 Analyze the frame shown in figure below by Cantilever method. 20 Marks

CO 2

Q. 12 Determine the Shape factor for the "T" Beam section shown in figure below. 20 Marks

OR
Q. 13 Determine the Influence line diagram for Bending Moment at mid span of AB for the continuous beam shown in figure below by Muller Breslau principle \& determine the ordinate at 2 m interval

Roll No:

证 UnEs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B. Tech (Civil)
Subject (Course): Structural Analysis II
Course Code : CIVL 3003
No. of page/s: 3

Semester - V
Max. Marks : 100
Duration : 3 Hrs
Paper: II

NOTE: Answer all questions from Part-A. Answer all questions from Part-B. Answer both questions from part-C. Missing data should be suitably assumed \& mention clearly

$$
\underline{\text { PART - A }}
$$

Q. 1 what is Influence line diagram. Explain its importance in structural analysis. 4 Marks CO1 Q. 2 Define the terms with neat sketches. (i) Stiffness (ii) Relative stiffness 4 Marks CO 2 Q. 3 State the advantage of fixed beams over simply supported beam. 4 Marks CO2 Q. 4 How sway correction factor is found for analysis of portal frame by Moment distribution method?

4 Marks CO2
Q. 5 Prove that flexibility matrix is inverse of stiffness matrix

4 Marks CO3

$\underline{\text { PART - B }}$

Q. 6 Analyze the Continuous beam shown in figure below by Flexibility method. Draw B.M.D \& S.F.D for the Same.

10 Marks
CO3

Q. 7 Analyze the frame shown in figure below by Stiffness method. Draw B.M.D \& S.F.D for the same.

Q. 8 Analyze the beam shown in figure below by Slope deflection method. Draw B.M.D \& S.F.D. The support B \& C settles by $8 \mathrm{~mm} \& 3 \mathrm{~mm}$.

10 Marks
CO 2

Q. 9 Analyze the frame shown in figure below by Moment distribution method. Draw B.M.D for the same.

10 Marks
CO 2

OR
Q. 10 Analyze the beam shown in figure below by Consistent Deformation method. Draw B.M.D \& S.F.D for the same. Take $\mathrm{M}_{\mathrm{A}} \& \mathrm{M}_{\mathrm{B}}$ as redundant. 10 Marks CO \& CO2

PART - C
Q. 11 Analyze the frame shown in figure below by Portal method.

20 Marks
CO2

Q. 12 Determine the Shape factor for the "I" Beam section shown in figure below. 20 Marks

OR
Q. 13 Determine the Influence line diagram for Shear force at mid span of $A B$ for the continuous beam shown in figure below by Muller Breslau principle \& determine the ordinate at 2 m interval. 20 marks $\mathrm{CO} 1 \& \mathrm{CO} 2$

