1. UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B Tech ICE	Semester - V	
Subject (Course): Operational Amplifiers and Applications	Max. Marks : 100	
Course Code : ICEG311	Duration	$: \mathbf{3 ~ H r s}$
No. of page/s: 3		

Instructions:

- Attempt all questions
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

$$
\text { Section - A (5x4 = } 20 \text { Marks) }
$$

1. Write short notes on virtual ground concept.
2. A particular inverting amplifier with nominal gain of -100 uses a non-ideal op-amp with $\mathrm{RF}=100 \mathrm{k} \Omega$ and $\mathrm{R} 1=10 \mathrm{k} \Omega$ resistors. The output is found to be +9.09 V with the input grounded. Estimate the value of the input offset voltage.
3. What is the function of op-amp comparator circuit? List out at least four applications.
4. Define three states in Phased Locked Loop (PLL): free running; capture; phase lock
5. A six-bit A / D converter has a maximum precision supply voltage of 20 V . What voltage change does each LSB represent? What voltage does 100110 represent?

$$
\text { Section - B (5x8 = } 40 \text { Marks) }
$$

6. Draw the circuits for precision half-wave and full-wave rectifiers, using Op-Amps. Explain their working with the help of waveforms and equations.
7. Draw the block diagrams of the 555 timer Show how 555 can be used as an mono-stable multi-vibrator. Describe the circuit operation with the help of waveforms and derive an expression for the frequency of oscillations
8. Obtain the mathematical expression for the output v_{0} in time or frequency domain in circuit shown in Fig. 1 hence identify the circuit function.

Fig. 1

Fig. 2
9. A regenerative comparator (Schmitt Trigger) circuit is shown in Fig. 2 (i) Derive expressions for upper threshold and lower threshold voltages, $\mathrm{V}_{\text {UT }}$ and $\mathrm{V}_{\text {LT }}$ respectively and hence the value of hysteresis voltage V_{H}. Calculate $\mathrm{V}_{\mathrm{UT}}, \mathrm{V}_{\mathrm{LT}}, \mathrm{V}_{\mathrm{H}}$ for the given values of $R_{1}=27 \mathrm{k} \Omega$ and $R_{2}=1 \mathrm{k} \Omega$. (ii) A sine wave with 2 V peak-to-peak amplitude and 1 kHz frequency is app lied at the input of the circuit. Plot the input and output waveforms. $\mathrm{Vcc}=+15 \mathrm{~V}$
10. What are the advantages of dual-slope A/D converter? Give a schematic diagram of such a converter and explain its operation with the help of timing waveforms.

Section - B ($2 \times 20=40$ Marks $)$

11. (a) Design a multi-feedback $2^{\text {nd }}$ order low pass filter shown in Fig. 3 with a cut-off frequency of 1 kHz , a voltage gain of 20 dB and a quality factor (Q) of 5 . Given that $\mathrm{R}_{1}=$ $\mathrm{R}_{2}=1 \mathrm{k} \Omega$

Fig. 3
(b) Design a circuit (Fig. 4), using one ideal op amp, whose output is $V_{O}=V_{i 1}+3 V_{i 2}-$ $2\left(V_{i 3}+3 V_{i 4}\right)$.

Fig. 4
12. (a) Design an astable multi-vibrator using 555 timer for a frequency of 10 kHz and a duty cycle of 60%. Assume $\mathrm{C}=0.5 \mu \mathrm{~F}$
(b) Fig. 5 shows a circuit for a digital-to-analog converter (DAC). The circuit accepts a 4-bit input binary word $a_{3} a_{2} a_{1} a_{0}$, where a_{0}, a_{1}, a_{2}, and a_{3} take the values of 0 or 1 , and it provides an analog output voltage V_{0} proportional to the value of the digital input. Each of the bits of the input word controls the correspondingly numbered switch. For instance, if a_{2} is 0 then switch S_{2} connects the $20 \mathrm{k} \Omega$ resistor to ground, while if a_{2} is 1 then S_{2} connects the $20 \mathrm{k} \Omega$ resistor to the +5 V power supply. Show that V_{0} is given by

$$
V_{0}=-\frac{R_{f}}{10} \frac{V_{R}}{2^{n}}\left(2^{3} a_{3}+2^{2} a_{2}+2^{1} a_{1}+2^{0} a_{0}\right)
$$

Where R_{f} is in $\mathrm{k} \Omega$. Find the value of R_{f} so that V_{0} ranges from 0 to -12 volts.

Fig. 5

1) UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B Tech ICE	Semester - V	
Subject (Course): Operational Amplifiers and Applications	Max. Marks $: 100$	
Course Code : ICEG311	Duration	$: \mathbf{3 ~ H r s}$
No. of page/s: 3		

Instructions:

- Attempt all questions
- Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

Section - A (5x4 = 20 Marks)

1. What are the important features of an instrumentation amplifier?
2. An op amp wired in the inverting configuration shown in Fig. 1 with the input grounded, having $R_{2}=100 \mathrm{k} \Omega$ and $R_{1}=1 \mathrm{k} \Omega$, has an output dc voltage of -0.4 V . If the input bias current is known to be very small, find the input offset voltage.

Fig. 1
3. Briefly discuss how the analog multiplier implemented by logarithmic amplifiers.
4. Explain how the triangular waveform can generated from square wave input.
5. Arrange the following A/D converters in order of increasing speed of operation: (i) Successive approximation; (ii) Dual-slope; (iii) Flash; (iv) Single-slope. An 8-bit successive approximation type A/D converter uses a clock frequency of 1 MHz . Calculate the conversion time of the converter.

$$
\text { Section - B (5x8 = } 40 \text { Marks })
$$

6. Draw the circuit of an Astable multi-vibrator using OP AMP (s) and explain it working with the help of waveforms. Derive an expression for frequency of oscillations.
7. Draw the $2^{\text {nd }}$ order Sallen key low pass filter circuit diagram. Also, determine the transfer function $\left(\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}\right)$ for this filter.
8. What is the principle of phased locked loop (PLL)? Draw schematic block diagram and explain the same.
9. Draw schematic diagram of an integrated/ dual-slope A / D converter. Explain its working with the help of timing waveforms.
10. Draw and explain the internal schematic circuit diagram of a 555 timer IC.

$$
\text { Section }-C(2 \times 20=40 \text { Marks })
$$

11. (a) Design the instrumentation-amplifier circuit of Fig. to realize a differential gain, variable in the range 1 to 100 , utilizing a $2 \mathrm{R}_{1}=100 \mathrm{k} \Omega$ pot as variable resistor. (Design the second stage for a gain of 0.5).

Fig.
(b) To obtain a high-gain, high-input-resistance difference amplifier, the circuit in Fig. employs positive feedback, in addition to the negative feedback provided by the resistor R connected from the output to the negative input of the op amp. Specifically, a voltage divider (R_{5}, R_{6}) connected across the output feeds a fraction β of the output, that is, a voltage βV_{0}, back to the positive-input terminal of the op amp through a resistor R. Assume that R_{5} and $R 6$ are much smaller than R so that the current through
R is much lower than the current in the voltage divider, with results that $\beta \cong \frac{R_{6}}{R_{5}+R_{6}}$. Show that the differential gain is given by

$$
A_{d}=\frac{V_{0}}{V_{i d}}=\frac{1}{1-\beta}
$$

Fig.
Design the circuit to obtain a differential gain of 10 . Select values for R, R_{5}, and R_{6}, such that $R_{5}+R_{6} \leq R / 100$
12. (a) Assume you have a 4-bit Successive Approximation type ADC. For the analog input $0.25 \mathrm{~V} ; 1.5$ and 1.75 V , show how the SAR would approximate the analog input with relevant diagrams. (Given that the $\mathrm{V}_{\text {ref }}$ is 4 V)
(b) It is required to design a noninverting amplifier with a dc gain of 10 . When a step voltage of 100 mV is applied at the input, it is required that the output be within 1% of its final value of 1 V in at most 100 ns . What must the value of slew rate and frequency f_{t} of the op amp be?

