Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017		
Program: B. Tech. Cyber Law	Semester –	Ι
Subject (Course): Chemistry	Max. Marks	: 100
Course Code : CHEM-1002 – Chemistry	Duration	: 3 Hrs
No. of page/s: Two		

Instructions- Read all the below mentioned instruction carefully and follow them strictly

- 1) Mention Roll No. at the top of the question paper
- 2) Do not write anything else on the question paper except your roll number
- 3) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY
- 4) Attempt all the questions.
- 5) Attempt either 12 A or 12 B in section C

Sect	ion A (attempt all FIVE questions)		5
1.	What is the potential of a half cell consisting of zinc electrode in $0.01M$ ZnSO ₄ solution at 25°C? E°=0.763V.	[4]	CO3
2.	Calculate the weight of air required for combustion of 3 kg carbon.	[4]	CO1
3.	For the first order gaseous reaction $X_{(g)} \rightarrow 2Y_{(g)}+Z_{(g)}$, the initial pressure P_x is 90mmHg. The pressure after 10 min is 80mm Hg. Calculate the rate constant of the reaction.	[4]	CO2
4.	For nucleophilic substitution reactions, which mechanistic pathway would be preferred in polar solvent and why? Give reasons.	[4]	CO4
5.	Which polymers are preferred to prepare the following commercial goods. Give structures a. Bubble body of helicopters b. Chewing gums c. Mineral water bottles d. Overhead water tanks	[4]	CO5
	SECTION B (Attempt all FIVE Questions)		CĽ.
6.	An edge of cubic cell of NaCl crystal is 6.5×10^{-8} cm. assuming that four molecules of NaCl are associated per unit cell, Calculate its density. Given: Avogadro's number= 6.023×10^{23} .	[8]	CO5
7.	Calculate the volume of air required for complete combustion of $1m^3$ of gaseous fuel having the composition: CO=47%, CH ₄ =10%, H ₂ =4%, C ₂ H ₄ =2%, N ₂ =1% and rest is carbondioxide.	[8]	CO1
8.	Show that in case of first order reaction, the time required to complete 99% is twice for	[8]	CO2

	its 90% completion.		
9.	$\begin{array}{ccc} & & & & \\ R & & & \\ R & & & \\ \end{array} \\ R & & \\ C & & \\ O R' \\ \end{array}$ Write the mechanism of the above reaction.	[8]	CO4
10.	Calculate the transference number of H^+ and Cl^- from the following data obtained by moving boundary method using cadmium chloride as the indicator electrolyte; concentration of HCl solution=0.1M, mass of Ag deposited in the coulometer = 0.1308g, movement of the boundary 5.5 cm and the cross section area of the tube = 1.39 cm ² .	[8]	CO3
	SECTION C (Attempt question number 11 and any one from 12A and 12B)		
11.	a. A sample of coal contains C=90%, H=9% and ash 1%. The following data were obtained when the above coal was tested in bomb calorimeter: weight of coal burnt=0.98 g, weight of water taken=1800g, water equivalent of bomb calorimeter=580g, Rise in temperature=2°C, Fuse wire correction=14 cal, Acid correction=50 cal. Calculate gross and net calorific values of coal assuming that the latent heat of condensation of steam is 580 cal/g.	12+8 [20]	CO1, CO5
	b. If average molecular weight of a polystyrene is 100000, calculate its average degree of polymerization.		
12 A.	a. In Arrhenius's equation for a certain reaction, the value of A and E (activation energy) are 4×10^{13} s ⁻¹ and 98.6 kj/mol respectively. If the reaction is of first order, at what temperature will its half-life period be 10 minutes?	10+10 [20]	CO2, CO5
	b. How can we get the nanoparticles of ZnO by micro-emulsion methods?		-
12 B.	 a. In Bragg's reflection of X-ray, a reflection was found 30° with lattice plane of spacing 1.87 A°. If this is a second order reflection, calculate the wavelength of X-rays. b. Write two applications of liquid crystals. 	5+5+10 [20]	CO5, CO5, CO2
	c. Discuss the mechanism and energy profile of SN_2 reactions.		_