Enrolment No:			
Pro CS Tim Inst use	Course: CHEM-1001 (Chemistry) (End Semester Examination) amme: B.Tech. APE-Gas, ASE, ASE+AVE, Chemical, ECE, PSE, EL, CS-CSF, CS-IFM, O, CS-DevOps Semester: I (2017- 3 hrs. Max. Marks:100 ctions: Read all the below mentioned instructions carefully and follow them strictly Write your Enrolment No. at the top of the question paper Do not write anything else on the question paper except your roll number ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY Internal choice is given for question number 12 $\mathrm{CO} 1, \mathrm{CO} 2, \mathrm{CO} 3, \mathrm{CO} 4 \& \mathrm{CO} 5$ mentioned in the last column stand for course outcomes and y	BFSI, CS 8) re for off	ERA, ial
Section - A (Attempt all FIVE Questions)			
1.	From the given molar conductivities at infinite dilution, determine the value of λ_{m}^{∞} for $\mathrm{NH}_{4} \mathrm{OH} . \lambda_{m}^{\infty}$ for $\mathrm{Ba}(\mathrm{OH})_{2}=457.6 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} ; \boldsymbol{\lambda}_{m}^{\infty}$ for $\mathrm{Ba}(\mathrm{Cl})_{2}=240.6 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} ; \boldsymbol{\lambda}_{m}^{\infty}$ for $\mathrm{NH}_{4} \mathrm{Cl}=129.8 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.	[4]	CO 3
2.	Standard reduction electrode potential of four metals A, B, C and D are $-1.2 \mathrm{~V},+0.5 \mathrm{~V}$, 0.0 V and -3.0 V , respectively. Arrange these metals in the order of their decreasing reducing power, explaining with suitable reason.	[4]	CO
3.	Gives four examples of each polar and non-polar solvents used for nucleophilic substitution (SN) reaction.	[2+2]	$\mathrm{CO4}$
4.	Classify the following species into electrophiles and nucleophiles: $\mathrm{BH}_{3}, \mathrm{NH}_{3}, \mathrm{CN}^{-}, \mathrm{Cl}^{+}$, $\mathrm{R}-\mathrm{Mg}-\mathrm{X}, \mathrm{CH}_{3}{ }^{+}, \mathrm{SO}_{3}$ and $\mathrm{HSO}_{4}{ }^{-}$.	[4]	CO4
5.	A protein sample is containing an equimolar mixture of haemoglobin ($\mathrm{M}=15.5 \mathrm{~kg} / \mathrm{mol}$), ribonuclease ($\mathrm{M}=13.7 \mathrm{~kg} / \mathrm{mol}$) and myoglobin ($\mathrm{M}=17.2 \mathrm{~kg} / \mathrm{mol}$). Find out the number average and mass average molecular weight of the polymer in $\mathbf{g m} / \mathbf{m o l e}$.	[2+2]	$\mathrm{CO5}$
SECTION - B (Attempt all FIVE Questions)			
6.	Describe the proximate analysis by drawing a neat sketch only. Mention each term and analysis temperature used on the figure. A sample of maize waste powder was analyzed by proximate analysis by a chemical student of UPES in the chemistry lab. The observed results were as follows: Moisture content 12%; volatile content 18%. If the initial weight of the samples was 0.80 gm , find out the amount of moisture content (in gm), volatile content (in gm), carbon content (in gm) and ash content (in \%) content, provided that at the end of the experiment the residual ash was found to be 80.0 mg .	[4+4]	$\mathrm{CO1}$
7.	Write down the expression of the rate constant for second and third order reaction (involving a single type of reactant) mentioning all the terms used. Draw the trend of graph for second and third order reaction in such a way so that a straight line having positive slope is obtained. What information can you draw from the slope and intercept of each graph?	[2+4+2]	CO 2

8.	(a) Discuss the nature of different oxide layers formed on the surface of metal during corrosion giving examples along with suitable diagram. (b) $\mathrm{Cu}^{2+}{ }_{\text {(aq) }}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}, \mathrm{E}^{\mathrm{o}}=+0.340 \mathrm{~V} ; \mathrm{Cu}^{+}{ }_{(\text {aq })}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}, \mathrm{E}^{\mathrm{o}}=+0.522 \mathrm{~V}$. Find out the value of E° for $\mathrm{Cu}^{2+}{ }_{(\text {aq })}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}{ }_{\text {(aq) }}$	[5+3]	CO3
9.	Draw the structure of the possible compounds from the following reactions mentioning the name and type of the reaction involved: (a) (b) (C) Arrange the following carbocations in order of increasing stability: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}{ }^{+},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CH}^{+},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}, \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}, \mathrm{CH}_{3}{ }^{+}$	[3+3+2]	CO4
10.	Discuss in detail the method of preparation of nanoparticles using sol gel method by drawing a suitable sketch.	[4+4]	CO5

SECTION - C

(Question No. 11 is Compulsory; Attempt any one from question numbers $12 \mathrm{~A} \& 12 \mathrm{~B}$)

\begin{tabular}{|c|c|c|c|c|}
\hline 12A. \& iii. \& \begin{tabular}{l}
What are different methods to improve the octane number of a fuel? How does isomerisation help in improving fuel quality? \\
In chemistry, determination of the activation energy is an important parameter of any type of chemical reaction. Write down Arrhenius equation for the determination of activation energy. Mention the terms used in the equation. A biomass conversion reaction occurs at \(25^{\circ} \mathrm{C}\) with a rate constant k . If the same reaction is carried out at \(40^{\circ} \mathrm{C}\), the observed rate constant was 4 k . Find out the activation energy of the reaction in \(\mathrm{Kj} /\) mole. Classification of polymers can be done in various ways. Discuss the classification of the polymers based on their thermal response.
\end{tabular} \& \begin{tabular}{|l|l}
\(4+4\) \\
\(1+1+6\)
\end{tabular} \& \(\mathrm{CO1}\)
CO 2

$\mathrm{CO5}$

\hline \multirow[t]{2}{*}{12B.} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| i. Explain the principle of fractional distillation. Arrange various fractions obtained during fractional distillation of crude oil in an increasing order of their boiling points using a suitable diagram |
| :--- |
| ii. Discuss the kinetics of a first order consecutive reaction of following type. $\mathrm{A} \xrightarrow{\mathrm{k}_{1}} \mathrm{~B} \xrightarrow{\mathrm{k}_{2}} \mathrm{C}$ |
| iii. Write down the reaction for the formation of urea formaldehyde polymer. Which type of polymerisation reaction is this? |}} \& 2

8 \& $\mathrm{CO1}$
$\mathrm{CO2}$

\hline \& \& \& 3+1 \& CO5

\hline
\end{tabular}

7.	(i) The Kp for the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \leftrightarrow 2 \mathrm{NO}_{2}$ is 640 mm at 775 K . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium pressure of 160 mm . (ii) For a homogeneous gaseous reaction, $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}+\mathrm{D}$, the initial pressure was P_{o} while pressure after time ' t ' was P. Derive an expression for rate constant K in terms of $\mathrm{P}_{\mathrm{o}}, \mathrm{P}$ and t , assuming it to be a first order reaction.	[8]	CO2
8.	A solution of CuSO_{4} was electrolyzed between copper electrodes. Before electrolysis, 10.09 g of the solution contained 0.01790 g of CuSO_{4}. After the experiment, 20.12 g of the anodic solution contained 0.06230 g of CuSO_{4}. At the same time, 0.011894 g of copper was deposited in the copper coulometer placed in series. Calculate the transport numbers of Cu^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ ions. ($\mathrm{Cu}=63.5, \mathrm{O}=16$ and $\mathrm{S}=32$)	[8]	CO 3
9.	Identify all the missing reagents / products / reactants in the given sequence of reaction. Also give the mechanism for each step.	[8]	$\mathrm{CO} 4$
10.	Discuss important applications of nanomaterials in daily life.	[8]	$\mathrm{CO5}$
SECTION - C(Question No. 11 is Compulsory; Attempt any one from question numbers 12A \& 12B)			
11.	i. (a) Discuss the formation of various types of films prepared by chlorine with tin and silver. (b) What is the most dangerous form of corrosion? Justify. ii. Discuss the following: (a) Addition of chlorine to cis-2-butene produces racemic mixture as product. (b) Partial racemisation is achieved in SN_{1} reaction. iii. How can we get the nanoparticles of ZnO by micro-emulsion method?	$\begin{gathered} {[8+8} \\ +4] \end{gathered}$	$\begin{aligned} & \hline \mathrm{CO} 3 \\ & \mathrm{CO} 4 \\ & \mathrm{CO} \end{aligned}$
12A.	i. $\quad 2.56 \mathrm{~g}$ coal sample was weighed in a silica crucible. The weight of the silica crucible is 20 g . After heating for an hour at $105^{\circ} \mathrm{C}$, the residue weighed 2.18 g . The crucible was covered with a lid and heated to 7 min at $950^{\circ} \mathrm{C}$. The residue weighed 1.628 g . The crucible was then heated without lid at $725^{\circ} \mathrm{C}$ and weight of silica crucible was found to be 20.265 g . Calculate the percentage of moisture, volatile content, ash and fixed carbon content in the sample. ii. In Arrhenius's equation for a certain reaction, the value of A and E (activation energy) are $4 \times 10^{13} \mathrm{~s}^{-1}$ and $98.6 \mathrm{kj} / \mathrm{mol}$ respectively. If the reaction is of first order, at what temperature will its half-life period be 10 minutes?	$\begin{gathered} {[8+8} \\ +4] \end{gathered}$	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$

	iii.	Give two examples each of addition polymerization and condensation polymerization.			
12B.	i.	(a) What are various processes to enhance the quality of petrol? Explain any two. (b) Why are corrections required for bomb calorimeter for estimation of HCV?	[8+8 $\mathbf{+ 4]}$	CO1 CO2 Discuss types of corrections. In a consecutive reaction $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ with rate constant k_{1} and k2, derive an expression for [B] $]_{\text {max. }}$ Discuss how does vulcanization help in improving the quality of natural rubber.	
	iii.				

