Enrolment No:

Course: CHEM-1001 (Chemistry) (End Semester Examination)

Programme: B.Tech. APE-Gas, ASE, ASE+AVE, Chemical, ECE, PSE, EL, CS-CSF, CS-IFM, BFSI, CS-ERA,
CS-BAO, CS-DevOpsSemester: I (2017-18)Time: 3 hrs.Max. Marks:100

Instructions: Read all the below mentioned instructions carefully and follow them strictly

- 1) Write your **Enrolment No**. at the top of the question paper
- 2) Do not write anything else on the question paper except your roll number
- 3) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY
- 4) Internal choice is given for question number 12

5) CO1, CO2, CO3, CO4 & CO5 mentioned in the last column stand for course outcomes and are for official use only

Section - A (Attempt all FIVE Questions)

1.	From the given molar conductivities at infinite dilution, determine the value of λ_m^{∞} for NH ₄ OH. λ_m^{∞} for Ba(OH) ₂ = 457.6 ohm ⁻¹ cm ² mol ⁻¹ ; λ_m^{∞} for Ba(Cl) ₂ = 240.6 ohm ⁻¹ cm ² mol ⁻¹ ; λ_m^{∞} for NH ₄ Cl = 129.8 ohm ⁻¹ cm ² mol ⁻¹ .	[4]	CO3
2.	Standard reduction electrode potential of four metals A, B, C and D are -1.2V, +0.5V, 0.0V and -3.0V, respectively. Arrange these metals in the order of their decreasing reducing power , explaining with suitable reason.	[4]	CO3
3.	Gives four examples of each polar and non-polar solvents used for nucleophilic substitution (SN) reaction.	[2+2]	CO 4
4.	Classify the following species into electrophiles and nucleophiles: BH ₃ , NH ₃ , CN ⁻ , Cl ⁺ , R-Mg-X, CH ₃ ⁺ , SO ₃ and HSO ₄ ⁻ .	[4]	CO4
5.	A protein sample is containing an equimolar mixture of haemoglobin (M=15.5 kg/mol), ribonuclease (M=13.7 kg/mol) and myoglobin (M =17.2 kg/mol). Find out the number average and mass average molecular weight of the polymer in gm/mole .	[2+2]	CO5
	SECTION - B (Attempt all FIVE Questions)		~
6.	Describe the proximate analysis by drawing a neat sketch only . Mention each term and analysis temperature used on the figure. A sample of maize waste powder was analyzed by proximate analysis by a chemical student of UPES in the chemistry lab. The observed results were as follows: Moisture content 12%; volatile content 18%. If the initial weight of the samples was 0.80 gm, find out the amount of moisture content (in gm), volatile content (in gm), carbon content (in gm) and ash content (in %) content, provided that at the end of the experiment the residual ash was found to be 80.0 mg.	[4+4]	CO1
7.	Write down the expression of the rate constant for second and third order reaction (involving a single type of reactant) mentioning all the terms used. Draw the trend of graph for second and third order reaction in such a way so that a straight line having positive slope is obtained. What information can you draw from the slope and intercept of each graph?	[2+4+2]	6 CO2

		sion giving examples along with suitable diagram.	[5 2]	CO3
	(b) C the va	$u^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}, E^{o} = +0.340 \text{ V}; Cu^{+}_{(aq)} + e^{-} \rightarrow Cu_{(s)}, E^{o} = +0.522 \text{ V}.$ Find out alue of E^{o} for $Cu^{2+}_{(aq)} + e^{-} \rightarrow Cu^{+}_{(aq)}$	[5+3]	03
9.		the structure of the possible compounds from the following reactions mentioning ame and type of the reaction involved:		
	(a)	$H_{3}C$ H	[3+3+2]	CO4
		The the following carbocations in order of increasing stability: CH_2^+ , $(C_6H_5)_2CH^+$, $(CH_3)_3C^+$, $(CH_3)_2CH^+$, $CH_3CH_2^+$, CH_3^+		
10.		uss in detail the method of preparation of nanoparticles using sol gel method by ing a suitable sketch .	[4+4]	CO5
		SECTION - C		8
	()	Question No. 11 is Compulsory; Attempt any one from question numbers 12A &	z 12B)	2
11.	((i. ii.	Question No. 11 is Compulsory; Attempt any one from question numbers 12A & In the moving boundary method, a current of 25mA was passed for 10 minutes. If the radius of the vertical cell is 3mm, calculate the distance moved (in mm) by H ⁺ in a solution of concentration 0.05 gm eq/litre. Given that t_{H^+} is 0.8292. Identify the (A) to (H) in the given reaction sequence, mentioning the name of the	8 8	CO3
11.	i.	In the moving boundary method, a current of 25mA was passed for 10 minutes. If the radius of the vertical cell is 3mm, calculate the distance moved (in mm) by H ⁺ in a solution of concentration 0.05 gm eq/litre. Given that t_{H+} is 0.8292.		
11.	i.	In the moving boundary method, a current of 25mA was passed for 10 minutes. If the radius of the vertical cell is 3mm, calculate the distance moved (in mm) by H ⁺ in a solution of concentration 0.05 gm eq/litre. Given that t_{H+} is 0.8292. Identify the (A) to (H) in the given reaction sequence, mentioning the name of the	8	CO3
11.	i.	In the moving boundary method, a current of 25mA was passed for 10 minutes. If the radius of the vertical cell is 3mm, calculate the distance moved (in mm) by H ⁺ in a solution of concentration 0.05 gm eq/litre. Given that t_{H+} is 0.8292. Identify the (A) to (H) in the given reaction sequence, mentioning the name of the reaction involved: $C_{6}H_{6} \xrightarrow{(CH_{3})_{2}CHCOCl} \qquad A \xrightarrow{Conc. H_{2}SO_{4}} B \xrightarrow{CH_{3}MgBr} C H_{2}O H_{$	8	CO3

12A.	i.	What are different methods to improve the octane number of a fuel? How does	4+4	CO1
		isomerisation help in improving fuel quality?		
	ii.	In chemistry, determination of the activation energy is an important parameter of		CON
		any type of chemical reaction. Write down Arrhenius equation for the	1+1+6	CO2
		determination of activation energy. Mention the terms used in the equation. A		
		biomass conversion reaction occurs at 25° C with a rate constant k. If the same		
		reaction is carried out at 40° C, the observed rate constant was 4k. Find out the		
		activation energy of the reaction in Kj/mole.		
	iii.	Classification of polymers can be done in various ways. Discuss the classification		
		of the polymers based on their thermal response.	4	CO5
12B .	i.	Explain the principle of fractional distillation. Arrange various fractions obtained	2+6	CO1
		during fractional distillation of crude oil in an increasing order of their boiling		
		points using a suitable diagram		
	ii.	Discuss the kinetics of a first order consecutive reaction of following type.	8	CO2
		$A \xrightarrow{k_1} B \xrightarrow{k_2} C$		
	iii.	Write down the reaction for the formation of urea formaldehyde polymer. Which type of polymerisation reaction is this?	3+1	CO5

UNIVERSITY WITH A PURPOSE

Enrolment No:

Course: CHEM-1001 (Chemistry) (End Semester Examination) Programme: B.Tech. APE-Gas, ASE, ASE+AVE, Chemical, ECE, PSE, EL, CS-CSF, CS-IFM, BFSI, CS-ERA, CS-BAO, CS-DevOps Semester: I (2017-18) Time: 03 hrs. Max. Marks:100 Instructions: Read all the below mentioned instructions carefully and follow them strictly 6) Write your **Enrolment No**. at the top of the question paper 7) Do not write anything else on the question paper except your roll number 8) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY 9) Internal choice is given for question number 12 10) CO1, CO2, CO3, CO4 & CO5 mentioned in the last column stand for course outcomes and are for official use only Section - A (Attempt all FIVE Questions) At 291K, the conductivity of saturated solution of ZnCl₂ is 3.86×10⁻⁵Scm⁻¹ and that of water 1. used for solution is 0.15×10^{-5} Scm⁻¹. The ionic conductances of Zn⁺² and Cl⁻ at infinite dilution [4] **CO3** are 51.0 and 47.0Scm² eq.⁻¹, respectively. Calculate the solubility of ZnCl₂ in solution. Complete the following reaction with mechanism: 2. CH H₃C Br [4] **CO4** Alc. KOH A(major) + B (Minor) Solutions of two electrolytes 'C' and 'D' are diluted. The molar conductance of D increases 3. 2.0 times while that of C increases 30 times. Which of the two is a stronger electrolyte? Justify [4] **CO3** your answer. Explain the effect of solvent on nucleophilic substitution reactions. 4. [4] **CO4** 5. Classify the polymers on the basis of chemical structure (type of monomeric unit used). [4] **CO5 SECTION - B** (Attempt all **FIVE** Questions) 6. Calculate the bond energy of $C \equiv C$ in C_2H_2 from the following data: $C_2H_2(g) + 5/2 O_2(g) \rightarrow 2CO_2(g) + H_2O; \Delta H = -310 \text{ Kcal}$ (i) $C(s) + O_2(g) \rightarrow CO_2(g); \Delta H = -94 \text{ Kcal}$ (ii) [8] (iii) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g); \Delta H = -68 \text{ Kcal}$ **CO1** Bond energy of C- H bonds = 99 Kcal Heat of sublimation of C = 171 Kcal and bond energy of H-H = 52 Kcal

	ii. In Arrhenius's equation for a certain reaction, the value of A and E (activation		
12A.	 i. 2.56g coal sample was weighed in a silica crucible. The weight of the silica crucible is 20g. After heating for an hour at 105°C, the residue weighed 2.18g. The crucible was covered with a lid and heated to 7 min at 950°C. The residue weighed 1.628g. The crucible was then heated without lid at 725°C and weight of silica crucible was found to be 20.265g. Calculate the percentage of moisture, volatile content, ash and fixed carbon content in the sample. 	[8+8 +4]	CO1 CO2 CO5
	 (a) Addition of chlorine to cis-2-butene produces racemic mixture as product. (b) Partial racemisation is achieved in SN₁ reaction. iii. How can we get the nanoparticles of ZnO by micro-emulsion method? 		
	 silver. (b) What is the most dangerous form of corrosion? Justify. ii. Discuss the following: 	+4]	CO4 CO5
11.	(Question No. 11 is Compulsory; Attempt any one from question numbers 12A & 12i.(a) Discuss the formation of various types of films prepared by chlorine with tin and	2B) [8+8	CO3
	SECTION - C		003
10.	Discuss important applications of nanomaterials in daily life.	[8]	CO5
	HBr HBr HBr HBr HBr HBr HBr HBr HBr HBr	[8]	CO4
	(A) (B) (B) (H_3C) $(C)(Major) + (D)(Minor)$ $(Heat$		
9.	Identify all the missing reagents / products / reactants in the given sequence of reaction. Also give the mechanism for each step.		
8.	A solution of CuSO ₄ was electrolyzed between copper electrodes. Before electrolysis, 10.09g of the solution contained 0.01790g of CuSO ₄ . After the experiment, 20.12g of the anodic solution contained 0.06230g of CuSO ₄ . At the same time, 0.011894g of copper was deposited in the copper coulometer placed in series. Calculate the transport numbers of Cu ²⁺ and SO ₄ ²⁻ ions. (Cu=63.5, O=16 and S=32)	[8]	CO3
	(ii) For a homogeneous gaseous reaction, $A \rightarrow B + C + D$, the initial pressure was P_0 while pressure after time 't' was P. Derive an expression for rate constant K in terms of P_0 , P and t, assuming it to be a first order reaction.	[8]	CO2
	dissociation of N_2O_4 at equilibrium pressure of 160 mm.		

	iii.	Give two examples each of addition polymerization and condensation polymerization.		
12B.	i. ii. iii.	 (a) What are various processes to enhance the quality of petrol? Explain any two. (b) Why are corrections required for bomb calorimeter for estimation of HCV? Discuss types of corrections. In a consecutive reaction A→B→C with rate constant k₁ and k₂, derive an expression for [B]_{max}. Discuss how does vulcanization help in improving the quality of natural rubber. 	[8+8 +4]	CO1 CO2 CO5