Name: Enrolment No:		1) UPES	
End Semester Examination, December 2017 Course: MATH-201-Mathematics-III Programme: B. Tech (GSE, MINING, ASE, FSE, APEUP, Electronics, EE Broad band, EE IOT, GIE, ASE AVE, Electrical, PSE, Cyber Law) Semester: III (ODD-2017-18) Time: 03 hrs. Max. Marks: 100 Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).			
Section A(Attempt all questions)			
1.	Expand $\frac{1}{z^{2}-3 z+2}$ for $1<\|z\|<2$.	[4]	CO3
2.	Evaluate $\int_{C} \frac{e^{2 z}}{z^{2}+1} d z$, where C is $\|z\|=\frac{1}{2}$.	[4]	CO3
3.	Express the polynomial $f(x)=4 x^{3}-2 x^{2}-3 x+8$ in terms of Legendre polynomials.	[4]	CO2
4.	Find the bilinear transformation which maps the points $z=0,-i,-1$ into $w=$ $i, 1,0$ respectively.	[4]	CO4
5.	The only singularities of a single valued function $f(z)$ are poles of order 1 and 2 at $z=-1$ and at $z=2$, with residues at these poles 1 and 2 respectively. If $f(0)=\frac{7}{4}$ and $f(1)=\frac{5}{2}$, determine the function.	[4]	CO4
SECTION B(Q6-Q9 are compulsory and Q10 has internal choice)			
6.	Find the value of a and b such that the function $f(z)=x^{2}+a y^{2}-2 x y+$ $i\left(b x^{2}-y^{2}+2 x y\right)$ is analytic. Also find $f^{\prime}(z)$.	[8]	CO3
7.	Evaluate $\int_{C} \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$, where C is $\|z\|=1$.	[8]	CO3
8.	Solve the difference equation $y_{n+2}-2 y_{n+1}+y_{n}=2^{n}$ by the generating function method with initial conditions $y_{0}=2$ and $y_{1}=1$.	[8]	CO1
9.	Prove the Rodrigues formula $P_{n}(x)=\frac{1}{n!2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.	[8]	CO2

10.	Solve $\quad\left(D^{2}-D D^{\prime}-2 D^{\prime 2}\right) z=(y-1) e^{x}$. OR Solve $\quad\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y)$.	[8]	$\mathrm{CO5}$
SECTION C(Q11 is compulsory and Q12 have internal choice)			
11.A	Apply the calculus of residues to evaluate the integral $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.	[10]	$\mathrm{CO4}$
11.B	Evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta d \theta}{5-4 \cos \theta}$.	[10]	CO4
12.	A tightly stretched string with fixed end points $x=0$ and $x=\pi$ is initially in a position given by $y=x, \quad 0<x<\pi$. If it is released from rest from this position, find the displacement $y(x, t)$. OR The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state prevails. The temperature of the ends are changed to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.	[20]	$\mathrm{CO5}$

	function method with initial conditions $y_{0}=3$ and $y_{1}=1$.		
9.	Show that $\int_{-1}^{1} x^{2} P_{n-1}(x) P_{n+1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}$	[8]	CO2
10.	Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y)$. OR Solve $r-t=\tan ^{3} x \tan y-\tan x \tan ^{3} y$.	[8]	$\mathrm{CO5}$
SECTION C(Q11 is compulsory and Q12 have internal choice)			
11.A	By the method of contour integration prove that $\int_{0}^{\infty} \frac{\cos x d x}{x^{2}+4}=\frac{\pi}{4 e^{2}}$.	[10]	CO4
11.B	Prove that $\int_{0}^{2 \pi} \frac{\cos 2 \theta d \theta}{5+4 \cos \theta}=\frac{\pi}{6}$	[10]	CO4
12.	A tightly stretched flexible string has its end fixed at $x=0$ and $x=l$. At time $t=0$, the string is given a shape defined by $F(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of any point x of the string at any time $t>0$. OR The ends A and B of a rod of length L are maintained at temperatures $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevails. Suddenly the temperature at the end A is increased to $20^{\circ} \mathrm{C}$ and the end B is decreased to $60^{\circ} \mathrm{C}$. Find the temperature distribution in the rod at time t.	[20]	$\mathrm{CO5}$

