Namo Enro	e: Iment No:	UPES	5	
Seme			/lechanio Max. Ma	
Atten	uctions: npt all questions from Section A (each carrying ng 8 marks); attempt all questions from Section Section	· · ·	ection B	(each
	(Attempt	all questions)		
1.	Solve the first order nonlinear equation $p =$	$\cot(px - y)$ where $p = \frac{dy}{dx}$.	[4]	CO1
2.	If functions $f(z)$ and $g(z)$ are analytic at z_0 and $g'(z_0) \neq 0$, then prove that $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f(z)}{g(z)}$		[4]	CO2
3.	Evaluate $\oint_{ z =1} \frac{z^2-9}{\cosh z} dz$.		[4]	CO3
4.	Show that $z = \infty$ (point at infinity) is an isola function $f(z) \equiv sinz - cosz$.	ted essential singularity of the	[4]	CO3
5.	Form a partial differential equation by elimina a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$	ating the arbitrary constants	[4]	CO4
		CTION B and Q10 has internal choice)		
6.	Show that the equation $(3y + 5xy^3)dx + (3x)$ an integrating factor $\mu(x, y)$ to the given equa	tion and hence solve the equation.	[8]	CO1
7.	Find the real general solution of the non-homological $x' = Ax + f(\theta)$ for the given matrix $A = \begin{bmatrix} 1 \\ 1 \\ x' = \frac{dx}{d\theta} \end{bmatrix}$.	ogeneous liner system $\begin{pmatrix} -2 \\ -1 \end{bmatrix}$ and $f(\theta) = \begin{bmatrix} tan\theta \\ 1 \end{bmatrix}$ where	[8]	CO1

8.	Find the integral of the function $f(z) = (z^2 - z + 2)$, between two points $z = 0$ and $z = 1 + i$ along two different paths and hence compare the results with direct integration.		CO2		
9.	Evaluate $\int_{ z =1} \frac{ze^z}{(4z+\pi i)^2} dz$ using Cauchy's integral formula.	[8]	CO2		
10.	Find all the singularities of $g(z) = \frac{\sin(z^2)}{z^5 \sin(z)}$ in \mathbb{C} and hence classify their nature. Also, find the residue at each isolated singularity. OR Find all the singularities of $g(z) = \frac{z-1}{\exp(\frac{2\pi i}{z})-1}$ in \mathbb{C} where $\exp(\frac{2\pi i}{z}) = e^{\frac{2\pi i}{z}}$.	[8]	CO3		
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)				
11.A	Apply calculus of residues to prove that $\int_0^{2\pi} \frac{d\theta}{5+3\cos\theta} = \frac{\pi}{2}$.	[10]	CO3		
11.B	A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $y(x, t)$.	[10]	CO4		
12.A	Expand $h(z) = \frac{7z-3}{z(z-1)}$ in a Laurent series valid for the annular domains (<i>i</i>) 0 < z < 1 and (<i>ii</i>) 0 < $ z - 1 < 1$. Find the residue of $h(z)$ at $z = 0$ and $z = 1$ from the obtained Laurent series. OR Apply calculus of residues to prove that Cauchy principal value of $\int_{-\infty}^{\infty} \frac{x^2 - x + 2}{x^4 + 10x^2 + 9} dx = \frac{5\pi}{12}$.	[10]	CO3		
12.B	Solve $(D_x^2 - 2D_xD_y - 3D_y^2)z = e^{y-x} \sin(y-2x)$ where $D_x \equiv \frac{\partial}{\partial x}$ and $D_y \equiv \frac{\partial}{\partial y}$. OR Form a partial differential equation by eliminating the arbitrary functions f, g and ϕ from $z = f(x - at) + x g(x - at) + x^2 \phi(x - at)$.	[10]	CO4		

Name Enro	e: Iment No:	UPES		
Seme			lechanic Max. Ma	
Instr Atter	uctions: npt all questions from Section A (each carry ng 8 marks); attempt all questions from Sec	ving 4 marks); attempt all questions from Se		
		Section A		
	(Atter Solve the system of differential equation	mpt all questions)		
1.	$\frac{dx}{dt} = 2$ $\frac{dy}{dt} = 2$	x + 3y $2x + y$	[4]	CO1
2.	Evaluate $\oint_C \frac{e^{3iz}}{(z+\pi i)^3} dz$, where <i>C</i> is the circ		[4]	CO2
3.	Find the radius of convergence of the pow $\sum_{n=0}^{\infty} a_n z^n$, where a_n		[4]	CO3
4.	Discuss the nature of all the singularities of	of the function $f(z) = \frac{z^2 - \pi^2}{\sin z}$.	[4]	CO3
5.	Solve the partial differential equation: $\frac{\partial^3 z}{\partial x^3} - 5 \frac{\partial^3 z}{\partial x^2 \partial y} + 5$	$\frac{\partial^3 z}{\partial x \partial y^2} + 3\frac{\partial^3 z}{\partial y^3} = 0$	[4]	CO4
		SECTION B ory and Q10 has internal choice)		1
6.	Solve the equation: $\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx$	$+\frac{1}{4}(1+y^2)xdy = 0$	[8]	CO1
7.	Let <i>f</i> denote an arbitrary function and $p =$ non-linear differential equation $y = 2px$ -		[8]	CO1
8.	Using Cauchy's integral formula to evaluate $z = e^{i\theta}$, $0 \le \theta \le 4\pi$ oriented counterclo	- 2	[8]	CO2

9.	Let $f(z) = u + iv$ and $g(z) = v + iu$ be analytic functions for all z. Let $f(0) = 1$ and $g(0) = i$. Obtain the value of $h(z)$ at $z = 1 + i$ where $h(z) = f'(z) + g'(z) + 2f(z)g(z)$.	[8]	CO2		
10.	Evaluate the integral $\oint_C \frac{z^{99}}{z^{100}-1} dz$, where <i>C</i> is the circle $ z = 100$.				
	OR Using the calculus of residues, evaluate the following integral: $\int_{-\infty}^{\infty} \frac{1}{x^6 + 64} dx$	[8]	CO3		
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)				
11.A	Determine the poles of the function $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ and the residue at each pole. Hence evaluate $\oint_C f(z)dz$ where <i>C</i> is the circle $ z = 10$.	[10]	CO3		
11.B	Solve the partial differential equation $\frac{\partial^2 z}{\partial x \partial y} = xy$ subject to the conditions $z(x,0) = e^x + 1$ and $z(0,y) = e^y + 1$.	[10]	CO4		
	Apply Calculus of residues to prove that $\int_{0}^{2\pi} \frac{d\phi}{(a+b\cos\phi)^2} = \frac{2\pi a}{(a^2-b^2)^{3/2}} \text{ where } a > 0, b > 0, a > b$				
12.A	OR Obtain the Taylor's series expansion of the function $f(z) = \frac{1}{z^2+4}$ about the point $z = -i$. Also, find the region of convergence.	[10]	CO3		
	Let <i>f</i> be a differentiable function of two variables <i>x</i> and <i>y</i> . Verify that the function $f\left(\frac{x}{y}, \frac{y}{z}\right) = 0$ is a solution of the partial differential equation $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$.				
12.B	OR A tightly stretched string with fixed end points $x = 0$ and $x = l$ is initially in a position given by $y = y_0 \sin^3\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $y(x, t)$.	[10]	CO4		