| Name: | UPES |
| :--- | :--- | :--- |
| Enrolment No: | |

End Semester Examination, Dec 2017

Course: MATH 222-Mathematics-III

Programme: B. Tech (ADE, APE Gas, CERP, ME MD, ME MSNT, ME PE, ME TE, Mechanical, Mechatronics)
Semester: III (ODD-2017-18)
Time: 03 hrs .

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A

(Attempt all questions)

1.	Solve the first order nonlinear equation $p=\cot (p x-y)$ where $p=\frac{d y}{d x}$.	[4]	CO1
2.	If functions $f(z)$ and $g(z)$ are analytic at z_{0} and $f\left(z_{0}\right)=0=g\left(z_{0}\right)$ but $g^{\prime}\left(z_{0}\right) \neq 0$, then prove that $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}$.	[4]	CO2
3.	Evaluate $\oint_{\|z\|=1} \frac{z^{2}-9}{\cosh z} d z$.	[4]	CO 3
4.	Show that $z=\infty$ (point at infinity) is an isolated essential singularity of the function $f(z) \equiv \sin z-\cos z$.	[4]	$\mathrm{CO3}$
5.	Form a partial differential equation by eliminating the arbitrary constants a, b, c from $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.	[4]	CO 4
SECTION B(Q6-Q9 are compulsory and Q10 has internal choice)			
6.	Show that the equation $\left(3 y+5 x y^{3}\right) d x+\left(3 x+4 x^{2} y^{2}\right) d y=0$ is not exact. Find an integrating factor $\mu(x, y)$ to the given equation and hence solve the equation.	[8]	CO1
7.	Find the real general solution of the non-homogeneous liner system $x^{\prime}=A x+f(\theta)$ for the given matrix $A=\left[\begin{array}{ll}1 & -2 \\ 1 & -1\end{array}\right]$ and $f(\theta)=\left[\begin{array}{c}\tan \theta \\ 1\end{array}\right]$ where $x^{\prime}=\frac{d x}{d \theta}$.	[8]	CO1

8.	Find the integral of the function $f(z)=\left(z^{2}-z+2\right)$, between two points $z=0$ and $z=1+i$ along two different paths and hence compare the results with direct integration.	[8]	$\mathrm{CO2}$
9.	Evaluate $\int_{\|z\|=1} \frac{z e^{z}}{(4 z+\pi i)^{2}} d z$ using Cauchy's integral formula.	[8]	CO2
10.	Find all the singularities of $g(z)=\frac{\sin \left(z^{2}\right)}{z^{5} \sin (z)}$ in \mathbb{C} and hence classify their nature. Also, find the residue at each isolated singularity. OR Find all the singularities of $g(z)=\frac{z-1}{\exp \left(\frac{2 \pi i}{z}\right)-1}$ in \mathbb{C} where $\exp \left(\frac{2 \pi i}{z}\right)=e^{\frac{2 \pi i}{z}}$.	[8]	CO
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Apply calculus of residues to prove that $\int_{0}^{2 \pi} \frac{d \theta}{5+3 \cos \theta}=\frac{\pi}{2}$.	[10]	$\mathrm{CO3}$
11.B	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $y(x, t)$.	[10]	$\mathrm{CO4}$
12.A	Expand $h(z)=\frac{7 z-3}{z(z-1)}$ in a Laurent series valid for the annular domains $(i) 0<$ $\|z\|<1$ and (ii) $0<\|z-1\|<1$. Find the residue of $h(z)$ at $z=0$ and $z=1$ from the obtained Laurent series. OR Apply calculus of residues to prove that Cauchy principal value of $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=\frac{5 \pi}{12} .$	[10]	$\mathrm{CO3}$
12.B	Solve $\left(D_{x}^{2}-2 D_{x} D_{y}-3 D_{y}^{2}\right) z=e^{y-x} \sin (y-2 x)$ where $D_{x} \equiv \frac{\partial}{\partial x}$ and $D_{y} \equiv \frac{\partial}{\partial y}$. OR Form a partial differential equation by eliminating the arbitrary functions f, g and ϕ from $z=f(x-a t)+x g(x-a t)+x^{2} \phi(x-a t)$.	[10]	$\mathrm{CO4}$

Name:

1 UPES

Enrolment No:

End Semester Examination, Dec 2017
 Course: MATH 222 - Mathematics III
 Programme: B.Tech. (ADE, APE Gas, CERP, ME MD, ME MSNT, ME PE, ME TE, Mechanical, Mechatronics)

Semester: III (ODD-2017-18)
Time: 03 hrs.
Max. Marks:100

Instructions:

Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A

(Attempt all questions)

1.	Solve the system of differential equation $\begin{aligned} & \frac{d x}{d t}=2 x+3 y \\ & \frac{d y}{d t}=2 x+y \end{aligned}$	[4]	CO1
2.	Evaluate $\oint_{C} \frac{e^{3 i z}}{(z+\pi i)^{3}} d z$, where C is the circle $\|z-\pi\|=3.2$.	[4]	CO 2
3.	Find the radius of convergence of the power series: $\sum_{n=0}^{\infty} a_{n} z^{n}, \text { where } a_{n}=\left\{\begin{array}{l} 2^{n}, n \text { is even } \\ 2^{-n}, n \text { is odd } \end{array}\right.$	[4]	$\mathrm{CO3}$
4.	Discuss the nature of all the singularities of the function $f(z)=\frac{z^{2}-\pi^{2}}{\sin z}$	[4]	CO 3
5.	Solve the partial differential equation: $\frac{\partial^{3} z}{\partial x^{3}}-5 \frac{\partial^{3} z}{\partial x^{2} \partial y}+5 \frac{\partial^{3} z}{\partial x \partial y^{2}}+3 \frac{\partial^{3} z}{\partial y^{3}}=0$	[4]	CO 4

SECTION B

(Q6-Q9 are compulsory and Q10 has internal choice)

6.	Solve the equation: $\left(y+\frac{1}{3} y^{3}+\frac{1}{2} x^{2}\right) d x+\frac{1}{4}\left(1+y^{2}\right) x d y=0$	[8]	CO1
7.	Let f denote an arbitrary function and $p=\frac{d y}{d x}$ then find the non-singular solution of non-linear differential equation $y=2 p x+f\left(x p^{2}\right)$.	[8]	$\mathbf{C O 1}$
8.	Using Cauchy's integral formula to evaluate $\oint_{C} \frac{\sinh \left(z^{2017}\right)}{z^{3}} d z$, where C is the circle $z=e^{i \theta}, 0 \leq \theta \leq 4 \pi$ oriented counterclockwise.	$[8]$	$\mathbf{C O 2}$

9.	Let $f(z)=u+i v$ and $g(z)=v+i u$ be analytic functions for all z. Let $f(0)=1$ and $g(0)=i$. Obtain the value of $h(z)$ at $z=1+i$ where $h(z)=f^{\prime}(z)+$ $g^{\prime}(z)+2 f(z) g(z)$.	[8]	CO 2
10.	Evaluate the integral $\oint_{C} \frac{z^{99}}{z^{100}-1} d z$, where C is the circle $\|z\|=100$. OR Using the calculus of residues, evaluate the following integral: $\int_{-\infty}^{\infty} \frac{1}{x^{6}+64} d x$	[8]	$\mathrm{CO3}$
SECTION C(Q11 is compulsory and Q12A, Q12B have internal choice)			
11.A	Determine the poles of the function $f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ and the residue at each pole. Hence evaluate $\oint_{C} f(z) d z$ where C is the circle $\|z\|=10$.	[10]	CO 3
11.B	Solve the partial differential equation $\frac{\partial^{2} z}{\partial x \partial y}=x y$ subject to the conditions $z(x, 0)=e^{x}+1$ and $z(0, y)=e^{y}+1$.	[10]	$\mathrm{CO4}$
12.A	Apply Calculus of residues to prove that $\int_{0}^{2 \pi} \frac{d \emptyset}{(a+b \cos \emptyset)^{2}}=\frac{2 \pi a}{\left(a^{2}-b^{2}\right)^{3 / 2}} \text { where } a>0, b>0, a>b$ OR Obtain the Taylor's series expansion of the function $f(z)=\frac{1}{z^{2}+4}$ about the point $z=-i$. Also, find the region of convergence.	[10]	$\mathrm{CO3}$
12.B	Let f be a differentiable function of two variables x and y. Verify that the function $f\left(\frac{x}{y}, \frac{y}{z}\right)=0$ is a solution of the partial differential equation $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$. OR A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $y(x, t)$.	[10]	$\mathrm{CO4}$

