

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech Electrical	Semester – III
Subject (Course): EMFT	Max. Marks : 100
Course Code :ELEG 231	Duration : 3 Hrs
No. of page/s:2	

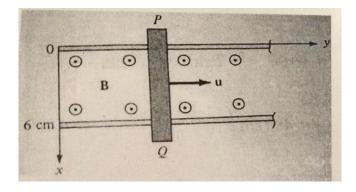
All questions are compulsory.

Section A

(5*4=20 M.M.)

- 1. (CO4) Obtain Maxwell's equations in differential and integral form for time varying fields.
- 2. (CO2) Explain what you understand by magnetic dipole, magnetic dipole moment, magnetic susceptibility and magnetization **M**.
- 3. (CO3) Derive laplace's equation pertaining to electrostatic potential distribution in a charge free space.
- 4. (CO1) Points P and Q are located at (0,2,4) and (-3,1,5). Calculate the position vector **P** and distance vector from P to Q
- 5. (CO2) For plane z = 0 and z = 4 carrying current $\mathbf{K} = -10 \mathbf{a}_x \text{ A/m}$ and $\mathbf{K} = 10 \mathbf{a}_x \text{ A/m}$ respectively. Determine \mathbf{H} at (1,1,1) and (0,-3,5).

Section B


(5*8=40 M.M.)

- 6. (CO1) Two uniform vector fields are given by $\mathbf{E}=-5 \mathbf{a}_{\rho} + 10 \mathbf{a}_{\phi} + 3\mathbf{a}_{z}$ and $\mathbf{F}=\mathbf{a}_{\rho} + 2 \mathbf{a}_{\phi} 6\mathbf{a}_{z}$. Calculate
 - a. | **E** X **F** |
 - b. The vector component of **E** at $p(5, \Pi/2, 3)$ parallel to the line x=2, z=3
 - c. The angle **E** makes with the surface z=3 at P. (3+4+3=10)
- 7. (CO2) A point charge of 12 nC is located at point P(0,0,3) while the conducting plane z=0 is grounded. Determine V and E at R(7,4,4).
- 8. (CO4) Discuss how magnetic levitation can be understood by electromagnetic levitation. Also explain Faraday's Law of Electromagnetic Induction.
- 9. (CO3) Show that Ampere's Law for steady currents is not applicable for time varying currents. Hence explain the concept of displacement current.
- 10. (CO5) If $\mathbf{P}=2 \sin(10t + x \pi/4) \mathbf{a}_y$ and $\mathbf{Q}_S = e^{jx} (\mathbf{a}_x \mathbf{a}_y) \sin \pi y$. Determine the phasor form of \mathbf{P} and instantaneous form of \mathbf{Q}_S .

Section C

- 11. (CO4) Following figure shows a conducting bar which can slide freely over two conducting rails. Determine the induced voltage in the bar:
 - a) If bar is stationed at y=10cm and **B**= 4 cos 10⁶t $a_z mWb/m^2$
 - b) If bar slides at a velocity $\mathbf{u} = 20 \mathbf{a}_{\mathbf{y}} \text{ m/s}$ and $\mathbf{B} = 4 \mathbf{a}_{\mathbf{z}} \text{ mWb/m}^2$
 - c) If bar slides at a velocity $\mathbf{u} = 20 \mathbf{a}_{y} \text{ m/s}$ and $\mathbf{B} = 4 \cos (10^{6} \text{t} \text{y}) \mathbf{a}_{z} \text{ mWb/m}^{2}$
 - d) Write down Faraday's Law and derive the expression for transformer and motional emf.

(4+5+5+6=20)

11. (CO4) Given magnetic boundary conditions for the interface between two magnetic media with μ_1 and μ_2 as the respective permeabilities of media1 and media 2.

Given $H_1 = -2 a_x + 6 a_y + 4 a_z A/m$ in region y-x-2 ≤ 0 , where $\mu_1 = 5 \mu_0$, calculate

- a. M_1 and B_1
- b. **H**₂ and **B**₂ in region y-x-2 ≥ 0 , where $\mu_2 = 2 \mu_0$ (10+10=20)
- 12. (CO5) State Poynting's Theorem.

In a non magnetic medium $\mathbf{E} = 4 \sin(2\pi \times 10^7 \text{ t} - 0.8 \text{ x}) \mathbf{a}_z \text{ V/m}$. Determine

- a. \mathcal{E}_r and intrinsic impedance
- b. Time average power carried by the wave
- c. Total power crossing 100 cm² of plane 2x + y = 5.

(4+6+5+5=20)

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech Electrical Subject (Course): EMFT Course Code :ELEG 231 No. of page/s:2 Semester – III Max. Marks : 100 Duration : 3 Hrs

All questions are compulsory.

Section A

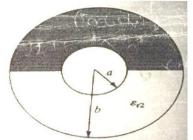
(5*4=20 M.M.)

- 1. (CO4) For '**D**' to be vanished for r > 10 cm for a sphere of radius 10cm has $\rho_v = (r^3/100) \text{ C/m}^3$, determine the point charge that must be placed at the center of the sphere.
- 2. (CO3) Discuss the concept of magnetic vector potential with relevant equations.
- 3. (CO1) Convert \mathbf{Q} into spherical coordinates and evaluate \mathbf{Q} at (0,-4,3)

$$\mathbf{Q} = \frac{\sqrt{x^2 + y^2} \mathbf{a}_x}{\sqrt{x^2 + y^2 + z^2}} - \frac{yz \mathbf{a}_z}{\sqrt{x^2 + y^2 + z^2}}$$

4. (CO4) Determine which of the following represents magneto static field? Justify. $B = e^{-y} (\cos x a_x - \sin x a_y)$ $D = 5e^{-2z} (\rho a_\rho + a_z)$

5. (CO5) State Poynting's Theorem. Give relevant equations.

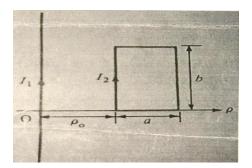

Section B

(5*8=40 M.M.)


(3+4+3=10)

- 6. (CO1) If **G** (r) = 10 e^{-2z} ($\rho \mathbf{a}_{\rho} + \mathbf{a}_{z}$), determine the flux of **G** out of the entire surface of the cylinder $\rho=1$, $0 \le z \le 1$. Confirm the result by using divergence theorem.
- 7. (CO2) Determine the electric field intensity and electric potential for a group of charges each having a magnitude 'q' C placed along x=1, x=2, x=4, x=8, x=16, x=32 and so on.
- 8. (CO4) Discuss phenomenon of electromagnetic levitation and give its applications.
- 9. (CO5)) A charged particle of mass 2kg and charge 2C starts at point (1,-2,0) with velocity $4\mathbf{a}_x + 3\mathbf{a}_z m/s$ in an electric field 12 $\mathbf{a}_x + 10 \mathbf{a}_y V/m$. At time t=1s determine
 - a. Acceleration of the particle
 - b. Its velocity
 - c. Its kinetic energy

10. (CO3) Determine the equivalent capacitance for the cross section of spherical capacitor shown in the figure below, given a=2.5mm, ε_{r1} =3.5 and ε_{r2} =4.5.



Section C(2*20=40 M.M.)11. (CO4) Determine H at (0,0,5) due to the segments 1,2 and 3 of the conducting triangular loop in
following figure carrying a current of 10A.(20)

- 11. (CO4) For a rectangular loop carrying current I₂ placed parallel to an infinitely long filamentary wire carrying current I₁ is shown in figure. Determine the force experienced by the loop by the current carrying wire.
 - (20)

12. (CO5) Give the general characteristics of a wave.

An electric field in in free space is given by $\mathbf{E} = 50 \cos (10^8 t + \beta x) \mathbf{a}_z \text{ V/m}.$

- a. Find the direction of wave propagation.
- b. Calculate β and the time it takes to travel a distance of $\lambda/2$.
- c. Sketch the wave at t=0, T/4, and T/2.

(5+4+6+5=20)