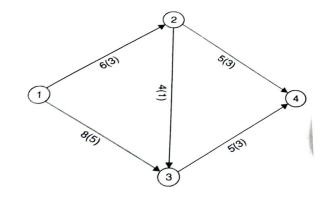
Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

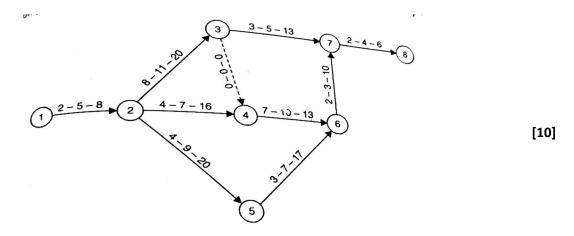
5	Program: Subject (Cour Course Code No. of page/s:	se): Co	ch Civi	il Engg	5			on, Deo	cembe	r 2017		Max	ester – . Marks ation	VII : 100 : 3 Hrs
				S	ection	A (<i>A</i>	ttem	pt All	Ques	tions)				
1.	What is con	tract?	What	are di	fferen	t type	of con	ntract	? Defin	ne the	m in b	rief.		[2]
2.	Define Slac	k & F I	loat ar	nd how	v these	e two a	are dif	ferent	•					[2]
3.	Explain why	y plan	ning is	s nece	ssary.	Descr	ibe va	rious	steps	for pla	nning	•		[2]
4.	Define cha disadvantag		istics	of "	Functi	onal	Orgar	nizatio	on". V	What	are i	ts ad [,]	vantage	& [2]
5.	Define proje			•	u diffe	erentia	ate risl	k fron	n issue	e. Quo	ote exa	ample	for risk	& [2]
6.	A construct identified by		•						Гhe р	redece	essor	relatic	onships	are
	Activity	A	В	C	D	E	F	G	Η	Ι	J	K	L	[5]
	Identifica tion	(1, 2)	(2, 4)	(2, 3)	(2, 7)	(3, 4)	(3, 5)	(4, 6)	(5, 6)	(5, 7)	(7, 8)	(6, 8)	(8, 9)	[2]


Draw Network diagram.

7. Who are the agencies supporting in construction project. Define their roles

[5]

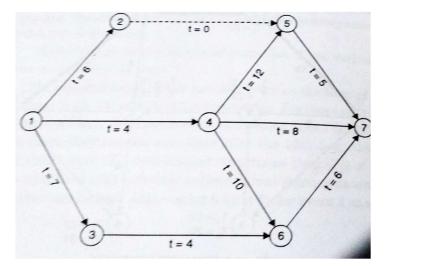
SECTION B (Attempt All Questions)


8. For the below mentioned project network, determine the optimum duration & the corresponding minimum cost. [10]

Activity	Normal	Normal Cost	Crash	Crash Cost
	Duration	(Rs.)	Duration	(Rs.)
	(weeks)		(weeks)	
1-2	6	7000	3	14500
1-3	8	4000	5	8500
2-3	4	6000	1	9000
2-4	5	8000	3	15000
3-4	5	5000	3	11000

The direct cost for the project is Rs. 3000/- per week. Draw the time scaled version of the network at each stage of crashing.

- 9. What is project planning? Write short note on pre- tender planning & pre-construction planning.
- 10. For a construction project, the network shown below with three times estimates of each activity.


Determine (i) the expected or average time t_E and the variance for each activity, (ii) the earliest expected time, and (iii) the latest allowable time for each event. Make the entries in a tabular form.

[10]

11. Define Project Quality Management System. Explain process of Quality Management system in detail. [10]

SECTION C (Attempt any two Question)

- 12. a.) Briefly describe the resource allocation issue in networking. What are the methods [10] of solving the problem?
 - b.) What you understand by Resource Smoothing & resource levelling? [10]
- 13. A network for project shown below. The network to be updated after 10 days of its execution. The following conditions exist at the end of 10 days:
 - a. Activity 1-2, 1-3 & 1-4 have been completed as originally scheduled.
 - b. Activity 4-5 is in progress & will require 6 more days for its completion.
 - c. Activity 4-6 is in progress & will require 6 more days for its completion.
 - d. Activity 3-6 is in progress & will be completed in one day
 - e. Other activities have not been commenced & their original predicted duration will hold good, except for activity 5-7 which will require only 3 days instead of five days originally planned.

[20]

- i. Update the network & determine the critical path for updated network. What is the total increase in the project duration?
- ii. Draw bar chart for the original project and show on it the progress as on 10th day. Indicate also the modification based on the re-assessment
- 14. a.) A construction Project consists of 5 Events. The predecessor are identified as below: [6]

Event	1	2	3	4	5	6	7	8
Preceded by event	Initial event	1	2	2 & 3	4	5&7	3&4	6&7

Draw Arrow Diagram for project.

b.) For the above network the expected times are as below:

Activity	1-2	2-3	2-4	3-4	3-7	4-5	4-7	5-6	6-8	7-6	7-8
Duration (Days)	5	8	9	3	12	4	12	8	10	2	5

[14]

If the schedule completion date is equal to the earliest expected time T_E for the end event, calculate the slack time for each event and identify the critical path. Present computation in tabular form.