Name:

Enrolment No:

End Semester Examination, December-2017

Course: Introduction to Numerical Analysis-MATH-203

Programme: B.Tech (ET+IPR) Semester: III (ODD-2017-18)

Max. Marks:100 Time: 03 hrs.

	actions:				
Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).					
Section A					
	(Attempt all questions)				
1.	If 0.333 is the approximate value of $\frac{1}{3}$. Find the absolute and relative errors.	[4]	CO1		
2.	Evaluate $\Delta \cos 2x$	[4]	CO1		
3.	Use Simpson's 1/3 rule to evaluate $\int_{0}^{1} \frac{1}{1+x^2} dx$ considering four subintervals.	[4]	CO2		
4.	Show that $(1 + \Delta)(1 - \nabla) \equiv I$	[4]	CO3		
5.	Using Hessian matrix determine whether the following function is convex or concave. $f(x_1, x_2) = 3x_1^3 - 6x_2^2$ SECTION B	[4]	CO4		
	SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)				
6.	Using bisection method find out the positive square root of 30 correct to 4 decimal places.	[8]	CO1		
7.	Use Gauss Seidel method to find the solution correct to 3 decimal places of following system of linear equations $12x_1 + 3x_2 - 5x_3 = 1$ $x_1 + 5x_2 + 3x_3 = 28$ $3x_1 + 7x_2 + 13x_3 = 76$ Use $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ as the initial guess.	[8]	CO3		
8.	Find $\frac{dy}{dx}$ at x=0.1 from the table $\begin{vmatrix} x & 0.1 & 0.2 & 0.3 & 0.4 \\ f(x) & 0.9975 & 0.9900 & 0.9776 & 0.9604 \end{vmatrix}$	[8]	CO2		

	Apply Euler's method to obtain y(1) from the following initial value problem				
9.	$\frac{dy}{dx} = x + y, y(0) = 0 \text{(take step size of 0.2)}$	[8]	CO3		
10.	Obtain the dual of the following LPP: $Maximize \ z = 2x_1 + 3x_2 + x_3$ subject to the constraints: $4x_1 + 3x_2 + x_3 = 6$ $x_1 + 2x_2 + 5x_3 = 4$ $x_1, x_2, x_3 \ge 0$ OR Show that the following system of equations has a degenerate solution: $2x_1 + x_2 - x_3 = 2$ $3x_1 + 2x_2 + x_3 = 3$	[8]	CO4		
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)				
11.A	Find y(32) by using Gauss forward central interpolation formula from following data values	[10]	CO2		
11.B	Express $y = 2x^3 - 3x^2 + 3x - 10$ in factorial notation and hence show that $\Delta^3 y = 12$.	[10]	CO2		
12.A	Using modified Euler's obtain $y(0.4)$ correct to 3 decimal places from the differential equation $\frac{dy}{dx} = x - y^2$ and $y(0.2) = 0.2$. (take step size of 0.2). OR Solve the system of linear equations by using Gauss Elimination method $2x_2 + x_3 = -8$ $x_1 - 2x_2 - 3x_3 = 0$ $-x_1 + x_2 + 2x_3 = 3$	[10]	CO3		
12.B	Find the maximum value using Simplex method of $z = 107x_1 + x_2 + 2x_3$ subject to the constraints:	[10]	CO4		

$$14x_1 + x_2 - 6x_3 + 3x_4 = 7$$

$$16x_1 + x_2 - 6x_3 \le 5$$

$$3x_1 - x_2 - x_3 \le 0$$

$$x_1, x_2, x_3, x_4 \ge 0$$

OR

Use the graphical method to solve the following LPP:

Minimize $z = -x_1 + 2x_2$;

$$-x_1 + 3x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

Name:

Enrolment No:

End Semester Examination, December-2017

Course: Introduction to Numerical Analysis -MATH-203

Programme: B.Tech (ET+IPR) Semester: III (ODD-2017-18)

Time: 03 hrs. Max. Marks:100

Instructions:

Attempt all questions from **Section A** (each carrying 4 marks); attempt all questions from **Section B** (each

	ng 8 marks); attempt all questions from Section C (each carrying 20 marks).	ction b	Cacii		
	Section A				
(Attempt all questions)					
1.	Find the truncation error for e^x at $x = \frac{1}{5}$ if the first three terms are retained in expansion.	[4]	CO1		
2.	Evaluate $\Delta \tan^{-1} x$	[4]	CO1		
3.	Use Trapezoidal rule to evaluate $\int_{0}^{1} x^{3} dx$ considering five subintervals.	[4]	CO2		
4.	Show that $E \equiv e^{hD}$	[4]	CO3		
5.	Using Hessian matrix determine whether the following function is convex or concave.	[4]	CO4		
J.	$f(x_1, x_2, x_3) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$				
	SECTION B		•		
	(Q6-Q9 are compulsory and Q10 has internal choice)				
6.	Find a real root correct to 3 decimal places of the equation $\cos x - 3x + 1 = 0$ by using method of iteration.	[8]	CO1		
	Use Gauss Seidel method to find the solution correct to 3 decimal places of				
	following system of linear equations				
7.	$4x_1 + x_2 - x_3 = 3$	[8]	СОЗ		
	$2x_1 + 7x_2 + x_3 = 19$				
	$x_1 - 3x_2 + 12x_3 = 31$				
8.	Use Lagrange interpolation formula to fit a polynomial to the following data				
	x -1 0 2 3	[8]	CO2		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
ı			l		

	Apply Euler's method to obtain y(1) from the following initial value problem			
9.	$\frac{dy}{dx} = x + y, y(0) = 0 \text{(take step size of 0.2)}$	[8]	CO3	
10.	Obtain the dual of the following LPP: $Minimize \ z = x_1 - 3x_2 - 2x_3$ subject to the constraints: $3x_1 - x_2 + 2x_3 \le 7$ $2x_1 - 4x_2 \ge 12$ $-4x_1 + 3x_2 + 8x_3 = 10$ $x_1, x_2 \ge 0$ and x_3 is unrestricted. OR Obtain all the basic solutions to the following system of linear equation: $x_1 + 2x_2 + x_3 = 4$ $2x_1 + x_2 + 5x_3 = 5$	[8]	CO4	
SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)				
11.A	The speed v meters per second of a car, t seconds after it starts, is given in the following table. Find distance travelled by a car in 2 minutes by using Simpson's 1/3 rule. t 0 12 24 36 48 60 72 84 96 108 120 v 0 3.6 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00	[10]	CO2	
11.B	Obtain the function whose first difference is $9x^2 + 11x + 5$.	[10]	CO2	
12.A	Using Runge -Kutta method of order four, obtain $y(1.2)$ from the differential equation $\frac{dy}{dx} = x^2 + y^2$ and $y(1)=1.5$. (take step size of 0.1). OR Solve the system of linear equations by using Gauss Elimination method $0.0002x + 0.3003y = 0.1002$ $2.0000x + 3.0000y = 2.0000$	[10]	CO3	
12.B	Find the maximum value using Simplex method of $z = 4x_1 + 10x_2$ subject to the constraints:	[10]	CO4	

$$2x_1 + x_2 \le 50$$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

$$x_1, x_2 \ge 0$$

OR

Use the graphical method to solve the following LPP:

Minimize $z = 2x_1 + 3x_2$;

subject to the constraints:

$$x_1 + x_2 \le 30$$

$$x_1 - x_2 \ge 0$$

$$x_2 \ge 3$$

$$0 \le x_1 \le 20, \quad 0 \le x_2 \le 12$$