Name: Enrolment No:			L UPES					
End Semester Examination, December-2017 Course: Introduction to Numerical Analysis-MATH-203 Programme: B.Tech (ET+IPR) Time: $\mathbf{0 3}$ hrs. Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).								
Section A(Attempt all questions)								
1.	If 0.333 is the approximate value of $\frac{1}{3}$. Find the absolute and relative errors.						[4]	CO1
2.	Evaluate $\Delta \cos 2 x$						[4]	CO1
3.	Use Simpson's $1 / 3$ rule to evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ considering four subintervals.						[4]	CO2
4.	Show that $(1+\Delta)(1-\nabla) \equiv I$						[4]	CO3
5.	Using Hessian matrix determine whether the following function is convex or concave.$f\left(x_{1}, x_{2}\right)=3 x_{1}^{3}-6 x_{2}^{2}$						[4]	$\mathrm{CO4}$
SECTION B (Q6-Q9 are compulsory and Q10 has internal choice)								
6.	Using bisection method find out the positive square root of 30 correct to 4 decimal places.						[8]	CO1
7.	Use Gauss Seidel method to find the solution correct to 3 decimal places of following system of linear equations $\begin{aligned} & 12 x_{1}+3 x_{2}-5 x_{3}=1 \\ & x_{1}+5 x_{2}+3 x_{3}=28 \\ & 3 x_{1}+7 x_{2}+13 x_{3}=76 \end{aligned}$ Use $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ as the initial guess.						[8]	CO 3
8.	Find $\frac{d y}{d x}$ at $x=0.1$ from the table	x	0.1	0.2	0.3	0.4		
		$f(x)$	0.9975	0.9900	0.9776	0.9604	[8]	CO 2

9.	Apply Euler's method to obtain $\mathrm{y}(1)$ from the following initial value problem $\frac{d y}{d x}=x+y, \quad y(0)=0 \quad$ (take step size of 0.2)				[8]	CO3
10.	Obtain the dual of the following LPP: Maximize $z=2 x_{1}+3 x_{2}+x_{3}$ subject to the constraints: $\begin{aligned} & 4 x_{1}+3 x_{2}+x_{3}=6 \\ & x_{1}+2 x_{2}+5 x_{3}=4 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$ OR Show that the following system of equations has a degenerate solution: $\begin{aligned} & 2 x_{1}+x_{2}-x_{3}=2 \\ & 3 x_{1}+2 x_{2}+x_{3}=3 \end{aligned}$				[8]	CO4
SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)						
11.A	Find $\mathrm{y}(32$) by using Gauss forward central interpolation formula from following data values				[10]	CO2
11.B	Express $y=2 x^{3}-3 x^{2}+3 x-10$ in factorial notation and hence show that $\Delta^{3} y=12$.				[10]	CO2
12.A	Using modified Euler's obtain $y(0.4)$ correct to 3 decimal places from the differential equation $\frac{d y}{d x}=x-y^{2}$ and $y(0.2)=0.2$. (take step size of 0.2). OR Solve the system of linear equations by using Gauss Elimination method $\begin{aligned} & 2 x_{2}+x_{3}=-8 \\ & x_{1}-2 x_{2}-3 x_{3}=0 \\ & -x_{1}+x_{2}+2 x_{3}=3 \end{aligned}$				[10]	CO3
12.B	Find the maximum value using Simplex method of $z=107 x_{1}+x_{2}+2 x_{3}$ subject to the constraints:				[10]	CO4

$$
\begin{aligned}
& 14 x_{1}+x_{2}-6 x_{3}+3 x_{4}=7 \\
& 16 x_{1}+x_{2}-6 x_{3} \leq 5 \\
& 3 x_{1}-x_{2}-x_{3} \leq 0 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

OR

Use the graphical method to solve the following LPP:
Minimize $z=-x_{1}+2 x_{2}$;
subject to the constraints:

$$
\begin{aligned}
& -x_{1}+3 x_{2} \leq 10 \\
& x_{1}+x_{2} \leq 6 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

| | $2 x_{1}+x_{2} \leq 50$
 $2 x_{1}+5 x_{2} \leq 100$
 $2 x_{1}+3 x_{2} \leq 90$ | |
| :--- | :--- | :--- | :--- |
| | $x_{1}, x_{2} \geq 0$ | |
| | OR | |
| | | |
| Use the graphical method to solve the following LPP: | | |
| Minimize $z=2 x_{1}+3 x_{2} ;$ | | |
| subject to the constraints: | | |
| $x_{1}+x_{2} \leq 30$ | | |
| $x_{1}-x_{2} \geq 0$ | | |
| $x_{2} \geq 3$ | | |
| $0 \leq x_{1} \leq 20, \quad 0 \leq x_{2} \leq 12$ | | |
| | | |

