1 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech. Mechatronics	Semester -	V
Subject (Course): Robotics \& Control	Max. Marks $: \mathbf{1 0 0}$	
Course Code : MEEL 333	Duration	$\mathbf{3 H r s}$
No. of page/s: $\mathbf{0 3}$		

Note: 1.) Section A has five questions of 4 marks each.
2.) Section B has four questions of 10 marks each.
3.) Section \mathbf{C} has three questions of $\mathbf{2 0}$ marks each.
4.) All the questions in Section A and Section B are compulsory. Attempt any two questions from section C.
5.) Assume any missing data.

SECTION A

Q.1: Differentiate between hybrid and impedance control techniques.
Q.2: Differentiate between forward and inverse kinematics.
Q.3: What is the purpose of a wrist? What is its typical degrees-of-freedom in an industrial robot?
Q.4: Prove the following:
a) $\operatorname{det}(\mathbf{Q})=1$
b) $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$
where, $\mathbf{Q}=$ rotation matrix.
Q.5: What are the different subsystems of a robotic system?

SECTION B

Q.6: A joint drive system consists of a DC servomotor with total inertia of $0.02 \mathrm{~kg}-\mathrm{m}^{2}$ and bearing friction of $0.5 \mathrm{~N} / \mathrm{s}$ and a gearbox with gear ratio of 32 . The link inertia is $5 \mathrm{~kg}-\mathrm{m}^{2}$ and the link bearing friction is 2 N / s. Determine the effective inertia ($\mathrm{J}_{\text {eff }}$) and effective damping ($\mathrm{B}_{\text {eff }}$) for the joint. Assume all shafts are rigid and massless. If the transfer function of above system is given by:
$G(s)=\frac{1}{J_{e f f} s^{2}+B_{e f f} s+1}$
determine the natural frequency, damping ratio, and the time response of the system for a unit step input.
Q.7: Consider the mass-spring-damper system shown in Fig.1. Design a control system for regulating the position of mass, using a
a) proportional derivative (PD) control strategy.
(b) partitioned proportional derivative (PPD) control strategy.

Give the control system block diagram and the mathematical model for the control system.

Fig.1: A mass-spring-damper system (Figure for Q.7)
Q.8: For the 2-DOF planar manipulator shown in Fig. 2, determine the joint displacements for known position and orientation of the end of the arm point using inverse kinematics analysis.

Fig.2: A 2-DOF planar manipulator (Figure for Q.8)
Q.9: Derive the velocity relationship and differential motion relationship between the joint coordinates and tip coordinates of a planar 2-DOF articulated manipulator arm. Comment on your results.

SECTION C

Q.10: The trajectory between two points is divided into two segments and two-cubic polynomial interpolation is to be used. The boundary conditions that the polynomials must satisfy are:
(i) position constraints at start, lift-off, set-down and goal positions, and (ii) continuity of velocity and acceleration at all the path points.

Determine the polynomial for each segment. Give the general expressions.
Q.11: a) It is required to unscrew a screw from an electricity panel board with the help of a screw-driver attached at the end-effector of a robot. Describe the natural and artificial constraints for this control task. b) Model the contact between the screw and screw-driver using a single degree of freedom mass-spring system to implement a hybrid control strategy.
Q.12: a) It is required to scrap paint from a glass pane with the help of a scrapping tool attached at the end-effector of a robot. Describe the natural and artificial constraints for this control task.
b) Model the contact between the scrapping tool and glass pane using a single degree of freedom massspring system to implement a hybrid control strategy.

