Roll No: \qquad

UNIVERSITY OF PETROLEUM
\& ENERGY STUDIES

End-Term Examination - December, 2017
Program/Course : B.Tech (CIT: CCVT, GG, MFT, MC, OSS, SCF, IOT, OG, CYBER LAW, BIG
DATA, DevOps)
Subject: Basic Electronics Engineering
Code : PHYS1003
Semester : I
Max. Marks : 100
No. of page/s: 02

Instructions:

1. Draw suitable circuit diagrams wherever required to justify your answer.
2. Your answer should be concise and to the point.

Section A (All questions are compulsory)			
1.	Explain the formation of depletion region in a P-N junction diode.	[4]	CO1
2.	Draw the circuit diagram for n-p-n transistor in C-E configuration. Explain why C-B configuration is not preferred for transistor to be used as current amplifier?	[4]	CO3
3.	Define the term "Slew Rate" and "CMRR" in contest with Operational Amplifiers.	[4]	CO4
4.	Write a brief note on signal to noise ratio in context to communication system. (maximum 60 words)	[4]	CO5
5.	What do you mean by Amplitude modulation? What are its limitations?	[4]	CO5
	Section B (All questions are compulsory. Question no. 9 has internal choice)		
6.	Derive an expression for the output voltage for an Op-amp Adder in inverting mode. Calculate the output voltage from the non-inverting amplifier circuit shown in figure below for an input of $120 \mu \mathrm{~V}$. Given, $\mathrm{R}_{1}=2.4 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=240 \mathrm{k} \Omega$. Also calculate the current in resistance R_{1}.	[5+5]	CO4
7.	Analyze the circuit shown below to determine the range of Zener current for keeping a constant voltage across the load resistance.	[10]	$\mathrm{CO} 2$

8.	What is feedback process in transistor amplifiers? What are negative and positive feedbacks and derive their respective expressions for voltage gain? Explain the advantage of negative feedback used in amplifiers.	[2+6+2]	CO4
9.	What is a load line and explain its importance? In C-E configuration if $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8$ $\mathrm{k} \Omega$, draw the d.c. load line. What will be the Q point if zero signal base current is $12 \mu \mathrm{~A}$ and $\beta=40$? OR Explain the construction and working of JFET. Give some differences between JFET and Bipolar Junction Transistor.	[10]	CO3
	Section C (Question 10 is compulsory. Question 11 has internal choices.)		
10.	a) A copper wire of 2 mm diameter with conductivity of 5.8×10^{2} Siemens $/ \mathrm{m}$ and electron mobility of $0.0032 \mathrm{~m}^{2} / \mathrm{V}$-s is subjected to an electric field of $2 \times 10^{-2} \mathrm{~V} / \mathrm{m}$. Find (a) the charge density of free electrons, (b) the current density, (c) the current flowing in the wire, (d) the electron drift velocity. Given charge on an electron $=1.6 \times 10^{-19} \mathrm{C}$. b) Write down the steps for determining the output waveform of unbiased positive Clampers? Analyze the circuit shown below to determine the output waveform.	$[10]$ $[5+5]$	CO1
$\begin{array}{\|l\|} \hline 11 . \end{array}$ (a)	(i) What is an Op-amp Integrator? Derive an expression for the output voltage for an Opamp Integrator. Draw the output sketch of an Integrator Op-amp circuit if the input is a square wave signal having both positive and negative halves. (ii) What is modulation and modulation index? Explain the need of modulation in communication system? The maximum peak to peak voltage of AM wave is 40 mV and minimum peak to peak voltage is 10 mV . Calculate the modulation factor. OR	$[2+5+3]$ $[3+4+3]$	CO4
11. (b)	(i) A three stage Op -amp circuit is required to provide voltage gains of $+10,-18$ and -27 . Design the Op-amp circuit. Use a $270 \mathrm{k} \Omega$ feedback resistor for all the three circuits. What output voltage will result for an input of $150 \mu \mathrm{~V}$? (ii) What is a radio receiver? Discuss the Amplitude Modulation superhetrodyne receiver by explaining the function of each stage with the help of a block diagram.	$[10]$ $[2+8]$	CO4

Roll No:

UNIVERSITY OF PETROLEUM \& ENERGY STUDIES

End-Term Examination - December, 2017
Program/Course : B.Tech (CIT: CCVT, GG, MFT, MC, OSS, SCF, IOT, OG, CYBER LAW,
BIG DATA, DevOps) Semester : I
Subject: Basic Electronics Engineering
Max. Marks : 100
Code : PHYS1003
Duration : 3 Hrs
No. of page/s: 02

Instructions:

1. Draw suitable circuit diagrams wherever required to justify your answer.
2. Your answer should be concise and to the point.

Section A (All questions are compulsory)			
1.	What do you mean by the diode equation and explain why it is called diode equation?	[4]	CO1
2.	Draw the input and output characteristic of NPN transistor in common emitter configuration and mark the different operating region.	[4]	CO3
3.	Explain the term "Input offset voltage" and "output offset voltage" in Operational Amplifier.	[4]	CO4
4.	Give some differences between Frequency Modulation and Amplitude Modulation.	[4]	CO5
5.	Discuss the different type of Noises with respect to communication system.	[4]	CO5
	Section B (All questions are compulsory. Question no. 9 has internal choice)		-
6.	Discuss the working of half and full wave center tapped rectifier with suitable circuit diagram. An input voltage of 40 sinwt and frequency 50 Hz is applied to a half-wave rectifier. $R_{L}=200 \Omega, R_{F}=20 \Omega$, Find $I_{d c}$, and $I_{r m s}$.	[6+4]	CO2
7.	Derive an expression for the output voltage of an Op-amp differentiator. Find the output voltage for the given circuit	[6+4]	CO4
8.	How the amplifier can be classified on the basis of operating point? Which types of operational amplifier have maximum efficiency and conduction angle?	[7+3]	CO4
9	Define Load line and operating point. In CE configuration $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=6 \mathrm{~K} \Omega$. Draw the load line. Determine operating point Q for zero signal, if base current is 1 $\mu \mathrm{A}$ and $\beta=50$. OR What are the basic differences between JFET and MOSFET? Discuss the working and	[4+6]	CO3

