Roll No:

L UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017
Program: B.Tech(APEU,CIVIL,FSE, ADE, Mech, MechE, GSE, GIE, Mining) Semester - I
Subject (Course): Basic Electrical and Electronics Engineering Max. Marks : 100
Course Code :ECEG1001
Duration : $\mathbf{3} \mathbf{~ H r s}$
No. of page/s: 2

Section -A

Note: Answer all of the following

5x4=20 Marks

1. For the logic diagram given below find the final output logical expression and write the truth table?

2. What is PN-junction Diode? Discuss the behavior of a PN junction under forward and reverse biasing and also sketch V-I characteristics of a PN Junction.
3. Find $\mathrm{I} 1, \mathrm{I} 2, \& \mathrm{I} 3$ in the network given below using loop-current method

4. When a 100 kVA single-phase transformer was tested the following results were obtained: On open circuit the power consumed was 1300 W and on short circuit at full load current the power consumed was 1200 W . Calculate the efficiency of transformer on full load and half load when working at unity power factor.

Section - B

Note: Answer all of the following

10x4=40 Marks
5. Compare CE and CB configurations for their various parameters (preferably in a tabular form). Also, explain why CE configuration is widely used in amplifier circuit. Draw input and output characteristics of the CE- configuration with proper operating regions.
6. For a particular NPN transistor with Emitter bias $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\beta=100, \mathrm{R}_{\mathrm{B}}=430 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{BB}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=20 \mathrm{~V}$ find $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}$ and V_{CE}
7. (i) Determine the current through 3Ω resistance shown in fig below using Thevenin's theorem. Also find maximum power to be transferred.

(ii) A coil having an inductance of 25 mH and negligible resistance in series with a 15 ohm resistor is connected across a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ Supply. Calculate the impedance, admittance, the phase angle between the current \& applied voltage, power factor, the apparent power $\&$ the active power.
8. Discuss the phenomenon of Electromagnetic Induction. Also discuss statically induced emf \& dynamically induced emf.

Section-C

Note: Answer all of the following

20x2=40 Marks

9. (i) Design a Bridge rectifier circuit for which $\mathrm{V}_{\mathrm{rms}}$ is given as 81.3 V with turn's ratio 10:1. Find the DC output Voltage V_{DC}, Maximum Value of AC input V_{m}, Primary \& secondary Voltages of Transformer $\mathrm{V}_{1} \& \mathrm{~V}_{2}$ and Ripple factor.
(ii) Implement a Full adder by using two Half adders and realize the Sum and $\mathrm{C}_{\text {out }}$ outputs by using NAND gates.
10. (i)With a neat sketch explain phasor diagram of a single phase transformer for a lagging power factor load.
(ii) a. Derive the emf equation of D.C. generator.
b. A 4-pole generator with wave wound armature has 51 slots each having 48 conductors. The flux per pole is 7.5 mWb . At what speed must the armature be driven to give an induced e.m.f of 440 V .

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017
Program: B.Tech(APEU,CIVIL,FSE, ADE, Mech, MechE, GSE, GIE, Mining)
Subject (Course): Basic Electrical and Electronics Engineering
Course Code :ECEG1001
Semester - I

No. of page/s: 3
Max. Marks : $\mathbf{1 0 0}$
Duration : 3 Hrs

Section-A

Note: Answer all of the following

5x4=20 Marks

1. Compare between Half Wave, Full Wave and Bridge Rectifiers
2. Convert the following
i. $\quad(\text { F67.5A })_{16}=(\quad)_{8}$
ii. $\quad(101011.1001)_{2}=()_{10}$
iii. $\quad(9309.124)_{10}=()_{16}$
iv. $\quad(101011)_{8}=()_{2}$
v. $\quad(679)_{8}=()_{10}$
3. Define Lenz's law. Also brief Magnetic flux density \& Magnetic field intensity.

Section-B

Note: Answer all of the following

5. Write the step by step process of implementing a Boolean function by using NOR gates and implement $Y=A+(B+C) .(\bar{B}+A)$ by using NOR gates after minimizing using Boolean laws.
6. Analyze the following circuit and calculate $\mathrm{V}_{\mathrm{th}}, \mathrm{R}_{\mathrm{th}}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{CE}}$

7. (i) A balanced star connected load of $(8+\mathrm{j} 6)$ ohm per phase is connected to a balanced 3-phase, 400 V supply. Find the line current, power factor, Active power \& total volt amperes.
(ii) A coil having a resistance of $4 \mathrm{ohm} \&$ inductance of 0.04 H is connected across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ Supply. Calculate the current, the phase angle between the current \& applied voltage, the apparent power \& the active power.
8. Discuss Flemings' Right hand rule \& hence use this rule to determine the direction of current getting induced in the DC generator with the working principle.

Section-C

Note: Answer all of the following
9. (i) Design a fixed bias circuit for a CE-amplifier such that $V_{C E}=8 V$ and $I_{C}=2 \mathrm{~mA}$. You are supplied with +15 V DC-supply as input for V_{BB} and V_{CC} and a silicon transistor with $\beta=100$. Calculate the value of R_{B} and Rc . Consider $\mathrm{V}_{\mathrm{BE}}=0.6 \mathrm{~V}$.
(ii) Design a Bridge rectifier circuit for which $\mathrm{V}_{\mathrm{rms}}$ is given as 81.3 V with turn's ratio 10:1. Find the DC output Voltage V_{DC}, Maximum Value of $A C$ input V_{m}, Primary \& secondary Voltages of Transformer $\mathrm{V}_{1} \& \mathrm{~V}_{2}$ and Ripple factor.
10. (i) Derive emf equation of a Single phase transformer \& hence comment on turns ratio.
(ii) A $100 \mathrm{kVA}, 6600 / 440 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase transformer has 80 turns on the low-voltage winding.
(a) Calculate the maximum flux in the core
(b) The number of turns on high voltage winding
(c) The current in each winding
(iii) The armature of a 4-pole DC generator is required to generate an emf of 520 V on open circuit when revolving at a speed of 660 rpm . Calculate the magnetic flux per pole required if the armature has 144 slots with 2 coils per slot, each coil consisting of three turns. The armature is wave wound.
(iv) A $5 \mathrm{kVA}, 1000 / 200 \mathrm{~V}, 50 \mathrm{~Hz}$ single-phase transformer gave the following test results:

Open circuit test (L.V side): $200 \mathrm{~V}, 1.2 \mathrm{~A}, 90 \mathrm{~W}$
Short circuit test (H.V. side): $50 \mathrm{~V}, 5 \mathrm{~A}, 110 \mathrm{~W}$
Calculate the efficiency of transformer on half load at unity power factor.

