

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech(EE/BCT/IoT)
Subject (Course): Network theory
Course Code: ELEG 204
Semester - III
Max. Marks: 100
Duration: 3 Hrs

No. of page/s: 3

Attempt all questions.

	SECTION A	Marks	[20]
1.	Determine the possible number of trees from figure[a] A 2 B 4 C 5 6 A 7	[5]	CO3
2.	figure[a] Differentiate between tree and co-tree.	[5]	CO3
3.	Find the Thevenin's equivalent circuit at terminals AB of the circuit given in Figure[b] 60V/60 DEGREE 10E 10E 10E 10E 10E 10E 10E	[5]	CO1
4.	Draw the equivalent circuit of a two-port network in terms of ABCD parameters. Also, derive the formula convert ABCD parameters in terms of h parameters.	[5]	CO1

	SECTION B	Marl	ks[40]
5.	Determine transmission parameters of a T network shown in figure [c] considering three parts I, II, III are connected in cascade. part	[10]	CO2
6.	Draw the Dual network of the Figure[d]	4	0
	2E R7 -J2 -TEXT> 4E R8 Figure[d]	[10]	CO4
7.	Draw The Pole Zero diagram of given transfer function. Also find the time domain response of system using Pole-Zero diagram method and also verify it alternatively using residue method $\frac{2s}{H(s)=\frac{2s}{(s^2+4s+8)}}$	[10]	CO3
8.	Synthesize the given impedance function in Foster I and Foster II form $\frac{8(s^2+4)(s^2+25)}{s(s^2+16)}$	[5+5]	CO4

	SECTION C	Marks[40]	
9.	Design the f-loop matrix and f-loop equations, for the network shown in figure [e]. 1	[20]	CO3
10.		[20]	CO4
	Synthesize the given function $F(s) = \frac{3(s+2)(s+4)}{s(s+3)}$ in a foster Form I&II and a Cauer Form I&II , if (a) $F(s)$ is an impedance function (b) $F(s)$ is an admittance function		JRPOS

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech(EE/BCT/IoT)
Subject (Course): Network theory
Course Code : ELEG 204
Semester – III
Max. Marks : 100
Duration : 3 Hrs

No. of page/s: 3

Attempt all questions.

	SECTION A	Marks	[20]
1.	Determine the possible number of trees from figure[a] B C A C figure[a]	[5]	CO3
2.	Differentiate between twigs and links.	[5]	CO3
3.	Find the Norton equivalent circuit at terminals AB of the circuit given in Figure[b] 4E R10 4E R11 4E R11 4E R11 Figure[b]	[5]	CO1

•	Draw the equivalent circuit of a two-port network in terms of Z parameters. Also, derive the formula convert Z parameters in terms of Y parameters.	[5]	CO1
<u>.</u>	SECTION B Determine transmission parameters of a T network shown in figure [c] considering three	Marl	ks[40]
	parts I, II, III are connected in cascade. part part	[10]	CO2
-	Figure[c] Draw the Dual network of the Figure[d]. also discuss the properties to form the dual graph. R18 2E R16 12E TEXTS 10V TEXTS 10F Figure[d] Draw The Pole Zero diagram of given transfer function. Also find the time domain	[10]	CO ₄
	response of system using Pole-Zero diagram method and also verify it alternatively using residue method $H(s) = \frac{s^2 + 4s + 3}{(s^2 + 2s)}$	[10]	CO
	Synthesize the given impedance function in Foster I and Cauer I form	[5+5]	CO

	$\frac{2(s^2+1)(s^2+9)}{s(s^2+4)}$		
	SECTION C	Marks[40]	
9.	Design the f-loop matrix and f-loop equations, for the network shown in figure [e] 0.5H R20 1H Figure[e]	[20]	CO3
10.	Explore the R-L representation of (a) Foster I and II (b) Cauer I and II for an impedance	[20]	CO4
	function, given by $F(s) = \frac{s(s+2)(s+5)}{(s+1)(s+4)}$		D.
	function, given by $F(s) = {s+1}(s+4)$		2

