1 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017
Program: B.Tech. Mechanical/ B.Tech. MSNT
Subject (Course): Finite Element Analysis/ Finite Element Method
Course Code : ASEG 483/ IFEG 452
Semester - VII

No. of page/s: 04
Note: 1.Section A has Four (04) questions of 5 marks each.
2. Section B contains Four (4) Questions of 10 marks each.
3. Section C has Three (3) Questions of 20 marks each. Attempt any two questions.
4. Assume any missing data.

SECTION A

Q.1: In a plane strain problem, we have:
$\sigma_{z}=20000 \mathrm{psi}, \sigma_{\mathrm{x}}=-10000 \mathrm{psi}, \mathrm{E}=30 \mathrm{X} 10^{6} \mathrm{psi}, v=0.3$
Determine the value of the σ_{y}.
Q.2: State and draw the linear and quadratic shape functions.
Q.3: Describe the various approaches for handling the boundary conditions in finite element analysis.
Q.4: A truss element, with local node numbers 1 and 2, is shown in Fig. 1.
a) What are the direction cosines l and m ?
b) If $\mathbf{q}=[0,0.01,-0.025,-0.05]^{\mathrm{T}}$ in., determine $\mathrm{q}_{1}{ }^{\prime}$, $\mathrm{q}^{2}{ }^{\prime}$.
c) Find the \mathbf{k} matrix.
d) Find the stress in the element.

Fig.1: A truss element (Figure for Q.4)

SECTION B

Q.5: Give the finite element formulation for a four node quadrilateral element.
Q.6: For the beam loading shown in Fig. 2, determine the deflections and slopes at points A, B and C .

Fig.2: A loaded beam (Figure for Q. 6)
Q.7: Derive the expression of stiffness matrix for a beam element.
Q.8: Derive the expression of \mathbf{B} matrix for a constant strain triangle element.

SECTION C

Q.9: Formulate and draw the shape functions for a three-noded beam element shown in Fig. 3. The third node 3 is at the center of the beam. Take length of beam as L.

Fig.3: A three-noded beam element (Figure for Q.9)
Q.10: For the truss shown in Fig. 4, find out the following:
(a) Element stiffness matrix for each element
(b) Assemble the global stiffness matrix
(c) The degrees of freedom at vertices- $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D
(d) Stresses in elements AC and BC
(e) Reaction force at point B.

$$
\mathrm{E}=200 \mathrm{GPa} ; \mathrm{A}=27 \mathrm{sq} . \mathrm{cm} \text { for each member }
$$

Fig. 4: A truss structure (Figure for Q.5)
Q.11: A bar of uniform cross-section is submerged in sea (Fig.5). The top end P of the bar is at a depth of 2000 m from the sea level and the bottom end Q is at the depth of 2002 m from the sea level. The bar is fixed at ends P and Q and is held stationary within the sea with some kind of mechanism. It is assumed that there is no disturbance due to flow of water. Using Rayleigh-Ritz method find the displacement at midpoint of the bar.

Fig.5: A bar submerged in sea (Figure for Q.11)

