

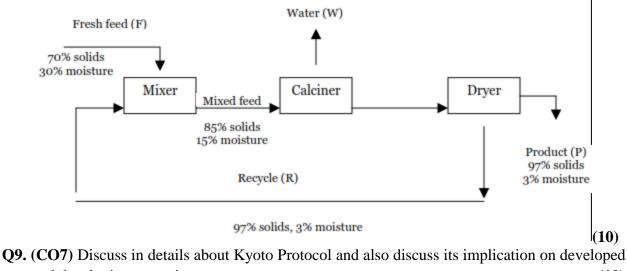
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

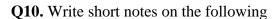
Program: B Tech Mechanical	Semester – VII	
Subject (Course): Energy Management	Max. Marks	: 100
Course Code : PSEG-442	Duration	: 3 Hrs
No. of page/s: 3		

All questions carry equal marks SECTION-A (5*4
Q1. (CO4) If feed of 100 tonnes per hour at 5% concentration is fed to a crystallizer, the produc
obtained at 25% concentration is equal to how much tonnes per hour. (4
Q2. (CO3) Describe the objectives of the energy policy in an organization. List down the format
of energy policy. (4
Q3. (CO6) Define the IRR of a project and indicate its limitation and advantages. (4
Q4. (CO2) Explain the Present Energy Scenario of India (in context to Coal, Natural Gas and
Renewable Power). (4
Q5. (CO3) Discuss in detail various Energy Efficiency projects handled by BEE. (4

All Questions carry equal marks	SECTION B (4	4*10)
---------------------------------	--------------	-------


Q6.(CO3) Briefly explain the concept of fuel and energy substitution by giving one example (10) **Q7. (a) (CO5)** Discuss various ways to relate the plant energy consumption with production. (5)

(b) (CO5) Using CUSUM technique to calculate energy savings for 6 months period of 2003. For calculating total energy savings, average production can be taken as 4000MT/month. Refer data given below


2003 Month	Actual SEC, kWh/MT	Predicted SEC, kWh/MT
Jan	242	265
Feb	238	265
Mar	287	265
Apr	237	265
May	295	265
June	246	265

(5)

Q8. (CO4) In a particular drying operation, it is necessary to hold the moisture content of feed to a calciner to 15% (W/W) to prevent lumping and sticking. This is accomplishing by mixing the feed having 30% moisture (w/w) with recycle steam of dried material having 3% moisture (w/w). The dryer operation is shown in fig below. What fraction of the dried product must be recycled?

- i) (CO1) Benchmarking
- ii) (CO2) Energy Pricing in India
- iii) (CO2) NAPCC
- iv) (CO7) CDM and Joint Implementation
- **Q11. (CO6)** Using the NPV method calculate the financial merits of the two proposed projects shown below in the table. The annual discount rate is 8% for each project

	Project 1	Project 2
Capital Cost	30,000	30,000
Year	Net annual	Net annual
I cal	Savings Rs)	Savings (Rs)
1	+6000	+6600
2	+6000	+6600
3	+6000	+6300
4	+6000	+6300
5	+6000	+6000
6	+6000	+6000
7	+6000	+5700
8	+6000	+5700
9	+6000	+5400
10	+6000	+5400
Total Net		
Savings at	+60000	+60000
end of 10 th year		

(20)

OR

Q12. (CO6) (a) (i) Construct a CPM diagram for the data given below

(ii) Identify the critical path. Also compute the earliest start, earliest finish, latest start & latest finish of all activities

Activity	Precedent	Time, weeks
A	Start	3
В	A	4
С	А	1
D	С	3
E	Start	2
F	В	2
Finish	D, E, F	

(CO6) (b) Briefly explain steps in Project Management and also explain types of contracts used in Project Management. (20)

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B Tech Mechanical Subject (Course): Energy Management Course Code : PSEG 442 No. of page/s: 3	Ν	Semester : VII Iax. Marks : 100 Duration : 3 Hrs
All questions carry equal marks	SECTION-A	(5*4)
Q1. (CO4) An oil fired furnace is retrofit drops from 82% to 72%. How muc	ľ	2
same amount of steam.		(4)
Q2. (CO3) Discuss the important aspects	of Integrated Energy Policy.	(4)
Q3. (CO1) Explain the concept of Energy	Management System giving exampl	e. (4)
Q4. (CO4) Explain the shankey diagram	of furnace.	(4)
Q5. (CO6) Explain in brief about the PDO	C (Project Development Cycle).	(4)

All Questions carry equal marks	SECTION B	(4*10)
---------------------------------	-----------	--------

Q6. (**CO4**) A solution which is 80% oil, 15% usable by-products and 5% impurities, enters a refinery. One output is 92% oil and 6% usable by products. The other output is 60% oil and flows at the rate of 1000lt/hr (assume no accumulation present by volume)

Calculate

- i) Flow rate of input.
- ii) Percentage composition of the1000lt/hr output.
- iii) Percent of the original impurities are in the 1000lt/hr output (10)
- **Q7.** (CO6) Two energy conservation projects have been proposed. For the first project, a capital investment of Rs.10,000/- is required and the net annual saving is Rs. 5000/- for 5 years. For the second project, a capital investment of Rs. 12000/- produces a savings of Rs. 5000/- for first 2 years and Rs. 6000/- for next 3 years. Salvage value at the end of 5 years for the second project is Rs. 1000/-. Determine:
 - (i) Net present value for both the projects with a discount factor of 9%.
 - (ii) Profitability index for both the projects with a discount factor of 9%.
 - (ii) Internal rate of return for both the projects.

(10)

Activity	Preceding activity	Duration (days)
А	-	10
В	А	9
С	А	4
D	С	7
Е	С	2
F	E	3
G	B, D	8
Н	D	4
Ι	F,G,H	1

Q8. (CO6) The details of activities for implementation of an energy efficient project is given below:

a) draw a PERT chart

b) find out the duration of the project

c) identify the critical path.

- **Q9.** (i) (CO1) Discuss in detail about fuel substitution and methods for matching energy usage to requirements.
 - (ii)(CO2) A thermic fluid heater with Furnace Oil (FO) is replaced by a Coconut chip fired boiler having the following details. Find out payback period based on the cost savings. Avg. efficiency of old system (Fuel Oil fired boiler) = 80 % Avg efficiency of the new system (Coconut chip fired boiler) = 70%

1070	
= 10200 kcal / kg	
= 4000 kcal / kg	
= 15 Lakh kcal / hr	
= 7000 Hours	
= Rs. 100 Lakhs	
= Rs. 20 / litre	
= Rs. 3000 / Ton	
= 0.90	(10)
SECTION C	(20*2)
	= 4000 kcal / kg = 15 Lakh kcal / hr = 7000 Hours = Rs. 100 Lakhs = Rs. 20 / litre = Rs. 3000 / Ton = 0.90

Attempt any one questionSECTION C(20*2)Q10. (CO6) Look at two purely fictitious lighting systems, A and B. Lighting System A is the
existing system and Lighting System B is a proposed retrofit system which simply includes
more-energy-efficient lamps and ballasts. They produce comparable light output.

	Lighting System A	Lighting SystemB (proposed)
No. of fixtures	100	100
Input Watts/Fixture	175	100
Hours of Operation/Year	3,000	3,000
Energy Consumption/Year (kWh)	525 / fixture	300 / fixture
Utility Cost/kWh	Rs 1.0	Rs 1.0
Cost of implementation	-	Rs 700/fixture
For above case study define and calcu	late:	
a) Simple payback		
b) Five-year cash flow		
c) Simple return on Investment		(20)

(10)

Q11 (CO6)(a) Explain in detail the steps in Project Management by giving suitable example (10)

(CO3) (b) Explain in detail the Salient Features of Energy Conservation Act 2001 (10)

OR

Q12. Explain the following terms with example:

- 1. (CO7) CDM Mechanism
- 2. (CO6) ESCO's role and Development
- **3.** (CO3) NAPCC
- 4. (CO5) Energy Monitoring and Targeting
- 5. (CO2) Purchasing Power Parity

(20)