1 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech ASEA	Semester -	III	
Subject (Course):	DIGITAL ELECTRONICS	Max. Marks	$: 100$
Course Code :	ELEG 220	Duration	$: 3$ Hrs
No. of page/s:	$\mathbf{0 2}$		

$\operatorname{Sec}(\mathbf{A})$

All questions are compulsory and each carry 5 marks.

1. What are the four types of flip-flop?
2. Why must the T and JK flip-flops be clocked.
3. In what ways can the operation of a flip-flop be described .
4. Differentiate between synchronous and asynchronous inputs.

$\operatorname{Sec}(B)$

All questions are compulsory and each carry 10 marks.
5. In general how may flip-flops are required to produce a mod-N counter, how many unused states will there be, and what is the outcome of entering these 'unused states'?
6. A four-bit ring counter and a four-bit Johnson counter are in turn clocked by a 10 MHz clock signal. Determine the frequency and duty cycle of the output of the output flip-flop in the two cases.
7. Draw the function table for (a) a negative edge-triggered D flip-flop and (b) a D latch with an active LOW ENABLE input.
8. Differentiate between:
a. synchronous and asynchronous inputs;
b. level-triggered and edge-triggered flip-flops;
c. active LOW and active HIGH inputs.

$\operatorname{Sec}(\mathbf{C})$

All questions are compulsory and each carry 20 marks.

9. Design a mod-N counter, how many unused states will there be, and what is the outcome of entering these 'unused states'? What is the procedure for producing an asynchronous binary modN counter, and what problems may be encountered when using such a circuit in practice?
10. Design a combinational circuit which is defined by $F=\Sigma 0,2,5,6,7$. Hardware implement the Boolean function F with a suitable decoder and an external OR/NOR gate having the minimum number of inputs.

1) UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B.Tech ASEA	Semester -	III	
Subject (Course):	DIGITAL ELECTRONICS	Max. Marks	100
Course Code :	ELEG 220	Duration	$: 3$ Hrs
No. of page/s:	02		

$\operatorname{Sec}(A)$

All questions are compulsory and each carry 5 marks.

1. What do the terms level triggered and edge triggered mean? (CO1)
2. What is a shift register, and why can such a circuit be used to multiply a binary number by $2^{\prime \prime}$. (CO3)
3. What is the 'mod' of a counter? (CO4)
4. What do the terms preset and reset mean when referred to counters? (CO4)

$\operatorname{Sec}(B)$

All questions are compulsory and each carry 10 marks.

5. Draw the truth table for the following types of flip-flop: (CO3)
a) a positive edge-triggered J-K flip-flop with active HIGH J and K inputs and active LOW PRESET and CLEAR inputs;
b) a negative edge-triggered J-K flip-flop with active LOW J and K inputs and active LOW PRESET and CLEAR inputs.
6. Briefly describe the following flip-flop timing parameters: (CO2)
(a) set-up time and hold time;
(b) propagation delay;
(c) maximum clock frequency.
7. What is meant by the race problem in flip-flops? How does a master-slave configuration help in solving this problem?
8. What does the circuit in Fig. 1 do? (CO3)

Fig. 1

$\operatorname{Sec}(\mathbf{C})$

All questions are compulsory and each carry $\mathbf{2 0}$ marks.

9. Design a mod-7 synchronous binary counter using JK flip-flops. Determine what happens if the count goes into any of the unused states and show the results on a state diagram. How must the circuit be modified if the unused state is to lead to state 4 (i.e. outputs of 100 from the flip-flops (MSB first)). (CO4)
10. The 100 kHz square waveform of Fig. 2 (a) is applied to the clock input of the flip-flops shown in Figs. 2(b) and (c). If the Q output is initially ' 0 ', draw the Q output waveform in the two cases. Also, determine the frequency of the Q output in the two cases. (CO4)

Fig. 2

