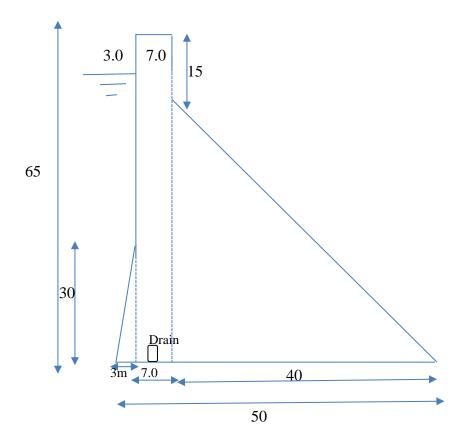


UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN

End Term Examination – December, 2017


Name of the Program/course: B.Tech Civil Engg. Semester - 7th
Subject Name: Design of Hydraulic Structures Max. Marks: 100
Subject Code: CEEG421 Duration: 3 Hrs

This question paper has two page(s).

Note:- Attempt all questions from section A &B. Attempt any two questions from Section C

1.	Derive an expression for the limiting height of a dam gravity dam.	[4]
2.	What do you understand by Biff wall and deflector wall?	[4]
3.	Discuss about relief wells and drain trenches.	[4]
4.	What was the reason for the failure of Khdakawasla dam in 1864-1961.	[4]
5	What is the purpose of providing cross drainage works?	[4]
	SECTION B (Attempt All Questions)	
5.	What do you understand by Critical slip circle? Describe how it can be located for different soils.	[10]
6	An earth dam is having a base width of 173m and height 30 m which includes a free board of 3 m. Top width of earth dam is 8 m. The u/s and d/s slopes are 3H:1V & 2.5H:1V. A drainage filter of 30 m length is provided at the toe of dam. Draw the top flow line. If coefficient of permeability of the soil material used in the dam is 5 x 10 ⁻⁴ cm/sec. find the seepage flow per unit length of the dam.	[10]
7	An ogee spillway has 20 crest gates each having 10 m clear span. Find the maximum flood that can be safely passed by lifting all the gates when the maximum reservoir elevation is 110.00 m and the crest level is 106 m. Take coefficient C as 2.16 m ^{1/2/} s. Coefficient of end contractions are 0.05 and 0.10 for piers and abutments respectively. Neglect velocity of approach.	[10]
8	Determine the central angle of arch dam at which minimum concrete is required.	[10]
	Section C	
9(a)	Draw a sketch for the stilling basin: i When TWRC is greater than JHC & for the stilling basin ii when TWRC is greater than JHC for low discharge and JHC is greater than TWRC for high discharge.	[4+8]
9(b)	Explain about function of intake structure and forebay components of hydroelectric power station	[8]
10	Design a cross regulator for a distributary taking off from a branch canal for the following data Discharge of branch channel = 105 cumec Discharge of distributary = 15 cumecs	[20]

	FSL of branch channel = $\frac{U/S}{D/S} = \frac{118.10 \text{ m}}{117.90 \text{ m}}$	
	Bed width of branch channel = $\frac{U/S}{D/S} = \frac{45 \text{ m}}{41 \text{ m}}$	
	Depth of branch channel = $\frac{U/S}{D/S} = \frac{2.5 \text{ m}}{2.5 \text{ m}}$	
	FSL of distributary =117.20 m	
	Bed width of distributary = 15 m	
	Depth of water in distributary = 1.6 m	
	Permissible exit gradient = 1/5	
11	For the cross section of gravity dam show in figure, check the stability for the reservoir for	[20]
	full conditions. Assume line of drain holes 8.0 m downstream from the upstream face of	
	the dam. Also find out principal and shear stresses at the heel and tow. Neglect earthquake	
	forces. Consider $\mu = 0.75$ Consider weight of dam, weight of water and uplift pressure.	
	All dimensions are in metre.	
	Take average shear strength(q) = 1.4 MPa and weight of Concrete = 24 KN/m ³ .	

