	Roll No:			
End S Progra Cours Cours No. of	VERSITY OF PETROLEUM AND ENERGY STUDIES emester Examination, May 2019 amme: B.Tech. (APE-UP, FSE) Semester - e Name: Applied Numerical Methods Max. Mar be Code: MATH-2002 Duration page/s: 02	. Marks : 100		
Attem	actions: opt all questions from Section A (each carrying 5 marks); attempt all questions from Section g 8 marks); attempt all questions from Section C (each carrying 20 marks).	ection B (each	
	SECTION A			
1.	(Attempt all questions) Round off the number 25.9855 to 2 decimal places and compute the relative error in your answer.	[5]	CO1	
2.	Derive Newton-Raphson iteration scheme to find the reciprocal of a positive number α .	[5]	CO1	
3.	Let $f(x)$ be a polynomial of unknown degree satisfying the points $(0,2), (1,7), (2,13)$ and $(3,16)$. If all the fourth divided differences of $f(x)$ are $-\frac{1}{6}$ then find $f(4)$.	[5]	CO2	
4.	Find the missing terms in the following table $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[5]	CO3	
SECTION B (Q5-Q8 are compulsory and Q9 has internal choice)				
5.	Suppose $p(x)$ is a polynomial of degree 2 that approximates the function 2^x for the points $x=0, 1 \land 2$. Find the absolute error in $p(3)$.	[8]	CO2	
6.	Consider a function $f(x)=[x]+[x]$, where $[x]$ denotes the greatest integer function which returns the largest integer less than or equal to x and $[x]$ denotes the round off function which returns the nearest integer to x. Evaluate the integral $\int_{1}^{3} f(x)dx$ by dividing the range of integration [1,3] into 8 equal parts. Also compute the absolute error in the calculated value.	[8]	CO3	
7.	Consider an initial value problem (IVP):	[8]	CO5	

	~]
	$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$		
	Suppose $f(x, y) = g(x)$ and $y(x_1 = x_0 + h)$ is calculated using Runge-Kutta method of		
	fourth order. Show that this method eventually reduces to Simpson's rule of		
	numerical integration for $f(x, y)$ with step-size $\frac{h}{2}$.		
8.	Use Taylor's series method to obtain $y(1.1)$ correct to 3decimal places, if given that $y' = yx$, $y(1) = 0$.	[8]	CO5
	Given the diffusion equation $u_t = u_{xx}$ with $u(0,t) = 0; u(1,t) = 0$ and $u(x,0) = \sin \alpha x$		
	such that $u(x,0)$ has zeros at integer values of x only. Apply Bender-Schmidt		
	method to solve for five time steps taking $h=0.25$.		
9.	OR	[8]	CO6
9.		႞ႄ႞	
	Solve $u_t = u_{xx}$ with $u(x, 0) = u(0, t) = 0$ and $u(1, t) = \lim_{\alpha \to 0} \left(\frac{e^{\alpha t} - 1}{\sinh \alpha \cosh \alpha} \right)$. Compute		
	Solve with and and Costra Costra Compute		
	u for $t=1/8$ in two time steps, using Crank-Nicolson's method.		
	SECTION C		
	(Q10 has internal choice and Q11 is compulsory)		
	$\begin{bmatrix} 1 & 1 & k \end{bmatrix}$		
	Suppose k is non-prime and the matrix $A = \begin{vmatrix} 1 & 1 & k \\ 2 & k & 2 \\ 1 & 3 & 2 \end{vmatrix}$ is such that $det(A) = -1$.	[20]	
	Consider the unique decomposition $A = LU$, where		
	$L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \text{ and } U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$		
	$L = \begin{bmatrix} l_{21} & 1 & 0 \\ l_{21} & l_{21} & 1 \end{bmatrix}$ and $U = \begin{bmatrix} 0 & u_{22} & u_{23} \\ 0 & 0 & 0 \end{bmatrix}$.		
	Let $X \in \mathbb{R}^3 \land b = [1,1,1]^t$. Find the solution of the system $AX = b$ where		
	$X = [x, y, z]^t.$		
	OR		
10.			CO4
	Suppose <i>k</i> is positive and the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & k & 3 \end{bmatrix}$ is such that $det(A) = 1$. Consider		
	the unique decomposition $A = LU$, where		
	$\begin{bmatrix} l_{11} & 0 & 0 \end{bmatrix}$		
	$L = \begin{bmatrix} 1 \\ l_{21} \end{bmatrix} \begin{bmatrix} 1 \\ l_{22} \end{bmatrix} = \begin{bmatrix} 1 \\ l_{21} \end{bmatrix}$ and $U = L^T$, where L^T denotes the transpose		
	$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \text{ and } U = L^T, \text{ where } L^T \text{ denotes the transpose}$		
	matrix of L.		
	Let $X \in \mathbb{R}^3 \land b = [1,1,3]^t$. Find the solution of the system $AX = b$ where		
	$X = [x, y, z]^t.$		

	Consider an IVP:		
	$\frac{dy}{dx} = y + (2x - 1)e^{x^2}, \ y(0) = 1$		
11.	Find the value of $y(1)$ using Euler's method with $h = \frac{1}{4}$.	[20]	CO5
	Also obtain the actual solution of the given IVP and compute the absolute error in the calculated value.		

	Roll No:			
U	UPES			
UNI	VERSITY OF PETROLEUM AND ENERGY STUDIES			
	Semester Examination, May 2019			
	Programme: B.Tech. (APE-UP, FSE)Semester – ICourse Name: Applied Numerical MethodsMax. Marks		ks : 100	
	se Code: MATH-2002 Durat f page/s: 02	10 n	: 3 Hrs	
	ructions:			
	npt all questions from Section A (each carrying 5 marks); attempt all questions fror	n Section	B (ea	ch
arry	ing 8 marks); attempt all questions from Section C (each carrying 20 marks).			
	SECTION A (Attempt all questions)			
	Compute the relative error in your answer if the number 5.9995 is truncated to	0 2		
1.	decimal places.	[5		CO1
2.	Let $f(x)=(x-1)^9$ and $x_n=1+\frac{1}{n^2}$, $n=1,2,3,$ be the sequence of approximation converging to the root $\alpha=1$. Find <i>n</i> for which $ \alpha-x_n <10^{-4}$.	ons [5]	CO
3.	Suppose $p(x)$ is a polynomial of degree 2 such that $p(x)=e^x$ at the point $x=0, 1 \wedge 2$. Calculate $p(3)-e^3$.	nts [5]	CO
4.	Suppose $f(x)$ is a cubic polynomial which bounds an area of 324 sq. un between $x = 0$ and $x = 6$ above $x - iax$ is. If $f(x)$ passes through the point (0,0), (1,1), (2,8), (3,a), (4,64), (5,b) and $(6,216)$ find the values of a and b.]	CO
	SECTION B	1	I	
	(Q5-Q8 are compulsory and Q9 has internal choice)			
5.	Suppose all the fourth divided differences of the polynomial $f(x)$ are $-\frac{1}{6}$ and f satisfies the data:	(x) [8]	CO

	x: 0 1 2 3		
	f(x): 2 7 13 16		
	Find $f(x)$.Evaluate the integral		
6.	I = $\int_{2}^{4} [x] - (x) dx$ by considering 9 ordinates, where $[x]$ denotes the greatest integer function which returns the largest integer less than or equal to x and (x) denotes the round off function which returns the nearest integer to x. Also compute the absolute error in	[8]	CO3
	the calculated value.		
7.	Suppose $y(x_0) = y_0$ and Runge-Kutta method (IV order) is applied on $y = \int_{0}^{x} g(t)dt$ $y(x_1 = x_0 + h)$. to calculate Show that this method eventually reduces to Simpson's rule of numerical integration for $g(x)$ with step-size $\frac{h}{2}$.	[8]	CO5
	Use Taylor's series method to obtain $y(1.1)$ correct to 3decimal places, if given		
8.	that $y'(x) = y(x)$ with $y=1$ at $x=0$.	[8]	CO5
9.	Given the diffusion equation $u_t = u_{xx}$ with $u(0,t) = 0$; $u(1,t) = 1$ and $u(x,0) = \sin \alpha x$ such that $u(x,0)$ has zeros at even integer values of x only. Apply Bender-Schmidt method to solve for five time steps taking $h=0.25$. OR $u_t = u_{xx}$ $u(x,0) = u(0,t) = 0$ $u(1,t) = \lim_{\alpha \to 0} \left(\frac{e^{\alpha t} - e^{-\alpha t} + \tan \alpha t}{\sinh(3\alpha)} \right)$. Solve with and Compute u for $t = 1/8$ in two time steps using Crapk Nicelson's method	[8]	CO6
	Solve with and $C_{compute u}$ for $t=1/8$ in two time store using Crapk Nicelson's method		
	Compute u for $t=1/8$ in two time steps, using Crank-Nicolson's method. SECTION C		
	(Q10 has internal choice and Q11 is compulsory)		
10.	Consider the matrix $A = \begin{bmatrix} 1 & 1 & k \\ 2 & k & 2 \\ 1 & 3 & 2 \end{bmatrix}$ such that $det(A) + 1 = 0$ where k is non-prime.	[20]	CO4
	Use Doolittle's method to solve the system $AX = b$ where $X = [x, y, z]^t$ and $b = [2, 5, c]^t$		
	$b = [3, 5, 6]^t$.		
	Suppose k is positive and the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & k & 3 \end{bmatrix}$ is such that $det(A) = 1$. Consider		
	the unique decomposition $A = LU$, where		

	$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \text{ and } U = L^T, \text{ where } L^T \text{ denotes the transpose}$		
	Let $X \in \mathbb{R}^3 \land b = [3,5,6]^t$. Find the solution of the system $AX = b$ where $X = [x, y, z]^t$.		
	Consider an IVP:		
	$y'(x) = \sin x + y(x), y(0) = 1$		
11.	Find the value of $y(1)$ using Euler's method with $h = \frac{1}{4}$.	[20]	CO5
	Also obtain the actual solution of the given IVP and compute the absolute error in the calculated value.		