Roll No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
End Semester Examination, May 2019
Programme: B.Tech. (APE-UP, FSE)
Semester - IV
Course Name: Applied Numerical Methods
Max. Marks : 100
Course Code: MATH-2002
Duration : 3 Hrs
No. of page/s: 02

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 5 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

SECTION A
 (Attempt all questions)

1.	Round off the number 25.9855 to 2 decimal places and compute the relative error in your answer.								[5]	CO1
2.	Derive Newton-Raphson iteration scheme to find the reciprocal of a positive number α.								[5]	CO1
3.	Let $f(x)$ be a polynomial of unknown degree satisfying the points $(0,2),(1,7),(2,13)$ and ${ }^{(3,16)}$. If all the fourth divided differences of $f(x)$ are $-\frac{1}{6}$ then find $f(4)$.								[5]	CO2
4.	Find the missing terms if the area bounded by units.	the 0 0 he	$\begin{aligned} & \frac{1 l o}{1} \\ & \hline 0 \\ & \hline \text { bic } \end{aligned}$	$\frac{\frac{n g}{2}}{\frac{4}{4}}$	$\begin{aligned} & \hline \text { le } \\ & \hline 3 \\ & ? \\ & \hline f(x \end{aligned}$	$\frac{4}{48}$	$\begin{aligned} & 5 \\ & ? \end{aligned}$	$\begin{aligned} & 180 \\ & \hline \text { and } \end{aligned}$	[5]	CO3

SECTION B

(Q5-Q8 are compulsory and Q9 has internal choice)

5.	Suppose $p(x)$ is a polynomial of degree 2 that approximates the function 2^{x} for the points $x=0,1 \wedge 2$. Find the absolute error in $p(3)$.	[8]	CO2
6.	Consider a function $f(x)=[x]+\lfloor x\rangle$, where $[x]$ denotes the greatest integer function which returns the largest integer less than or equal to x and $\langle x\rangle$ denotes the round off function which returns the nearest integer to x. Evaluate the integral $\int_{1}^{3} f(x) d x$ by dividing the range of integration $[1,3]$ into 8 equal parts. Also compute the absolute error in the calculated value.	[8]	CO 3
7.	Consider an initial value problem (IVP):	[8]	CO5

	$\frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0}$ Suppose $f(x, y)=g(x)$ and $y\left(x_{1}=x_{0}+h\right)$ is calculated using Runge-Kutta method of fourth order. Show that this method eventually reduces to Simpson's rule of numerical integration for $f(x, y)$ with step-size $\frac{h}{2}$.		
8.	Use Taylor's series method to obtain $y(1.1)$ correct to 3decimal places, if given that $y^{\prime}=y x, y(1)=0$.	[8]	CO5
9.	Given the diffusion equation $u_{t}=u_{x x}$ with $u(0, t)=0 ; u(1, t)=0$ and $u(x, 0)=\sin \alpha x$ such that $u(x, 0)$ has zeros at integer values of x only. Apply Bender-Schmidt method to solve for five time steps taking $h=0.25$. OR $\begin{aligned} & \quad u_{t}=u_{x x} \quad u(x, 0)=u(0, t)=0 \quad u(1, t)=\lim _{\alpha \rightarrow 0}\left(\frac{e^{\alpha t}-1}{\sinh \alpha \cosh \alpha}\right) \cdot \text { and Compute } \\ & \text { Solve } \quad \text { with } \\ & u \text { for } t=1 / 8 \text { in two time steps, using Crank-Nicolson's method. } \end{aligned}$	[8]	CO6
	SECTION C (Q10 has internal choice and Q11 is compulsory)		
10.	Suppose k is non-prime and the matrix $A=\left[\begin{array}{lll}1 & 1 & k \\ 2 & k & 2 \\ 1 & 3 & 2\end{array}\right]$ is such that $\operatorname{det}(A)=-1$. Consider the unique decomposition $A=L U$, where $L=\left[\begin{array}{ccc} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{array}\right] \text { and } U=\left[\begin{array}{ccc} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{array}\right] .$ Let $X \in R^{3} \wedge b=[1,1,1]^{t}$. Find the solution of the system $A X=b$ where $X=[x, y, z]^{t}$. OR Suppose k is positive and the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & k \\ 1 & k & 3\end{array}\right]$ is such that $\operatorname{det}(A)=1$. Consider the unique decomposition $A=L U$, where $L=\left[\begin{array}{ccc} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{array}\right] \text { and } U=L^{T} \text {, where } L^{T} \text { denotes the transpose }$ matrix of L. Let $X \in R^{3} \wedge b=[1,1,3]^{t}$. Find the solution of the system $A X=b$ where $X=[x, y, z]^{t}$.	[20]	$\mathrm{CO4}$

	Consider an IVP: 11. $\frac{d y}{d x}=y+(2 x-1) e^{x^{2}}, y(0)=1$				
Find the value of $y(1)$ using Euler's method with $h=\frac{1}{4}$.				CO5	
:---	:---				
Also obtain the actual solution of the given IVP and compute the absolute error in the calculated value.					

Roll No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019
Programme: B.Tech. (APE-UP, FSE)
Course Name: Applied Numerical Methods
Semester - IV
Course Code: MATH-2002
Max. Marks : 100
No. of page/s: 02

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 5 marks); attempt all questions from Section \mathbf{B} (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

SECTION A
(Attempt all questions)

1.	Compute the relative error in your answer if the number 5.9995 is truncated to 2 decimal places.	[5]	CO1
2.	Let $f(x)=(x-1)^{9}$ and $x_{n}=1+\frac{1}{n^{2}}, n=1,2,3, \ldots$ be the sequence of approximations converging to the root $\alpha=1$. Find nfor which $\left\|\alpha-x_{n}\right\|<10^{-4}$.	[5]	CO1
3.	Suppose $p(x)$ is a polynomial of degree 2 such that $p(x)=e^{x}$ at the points $x=0,1 \wedge 2$. Calculate $p(3)-e^{3}$.	[5]	CO2
4.	Suppose $f(x)$ is a cubic polynomial which bounds an area of 324 sq. units between $x=0$ and $x=6$ above $x-i$ axis. If $f(x)$ passes through the points $(0,0),(1,1),(2,8),(3, a),(4,64),(5, b)$ and $(6,216)$ find the values of a and b.	[5]	CO3
SECTION B (Q5-Q8 are compulsory and Q9 has internal choice)			
5.	Suppose all the fourth divided differences of the polynomial $f(x)$ are $-\frac{1}{6}$ and $f(x)$ satisfies the data:	[8]	CO2

	$L=\left[\begin{array}{ccc}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right]$ and $U=L^{T}$, where L^{T} denotes the transpose matrix of L. Let $X \in R^{3} \wedge b=[3,5,6]^{t}$. Find the solution of the system $A X=b$ where $X=[x, y, z]^{t}$.		
11.	Consider an IVP: $y^{\prime}(x)=\sin x+y(x), y(0)=1$ Find the value of $y(1)$ using Euler's method with $h=\frac{1}{4}$. Also obtain the actual solution of the given IVP and compute the absolute error in the calculated value.	[20]	CO5

