Name:

Enrolment No:

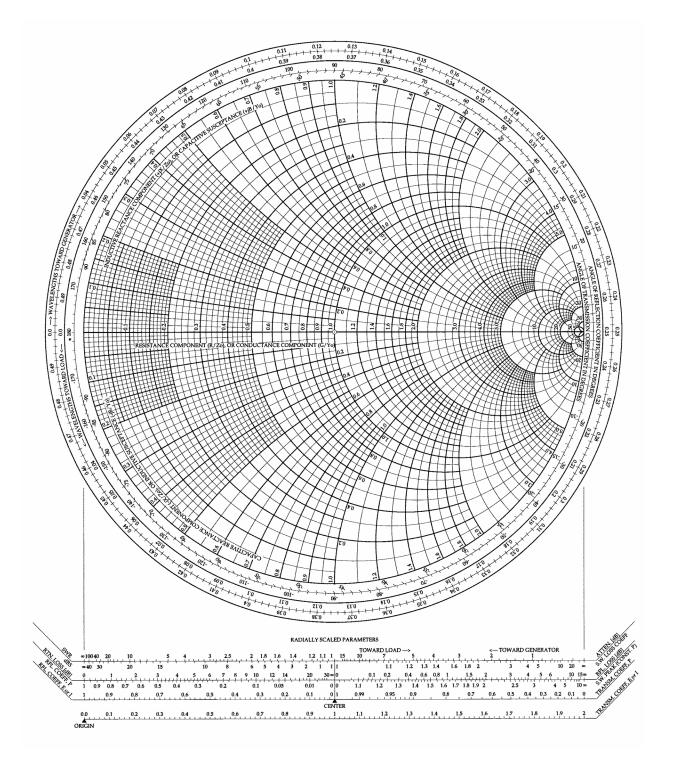
Course Name

: IV

: 02 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Mid Semester Examination, March 2019


Programme Name: B.Tech ECE

e: B.Tech ECE Semester
: Engineering Electromagnetism Time

Course Code : ECEG 2012 Max. Marks : 100

Nos. of	• 9 \ /	· _ •	
Instructions: SECTION A			4x5=20
S. No.		Marks	CO
1.	Define the inconsistency of ampere circuit law	5	CO1
2.	Brewster Angle in the parallel polarization incident obliquely on a dielectric material	5	CO2
3.	Write about SC and OC transmission line.	5	CO4
4.	Write about structure of microstrip	5	CO5
	SECTION B		4x10=40
	Answer any four questions		
5.	A free charge of copper is $1.8 \times 10^{10} \text{C/m}^3$. For a current density of $8 \times 10^6 \text{A/m}^2$, find the electric field intensity and drift velocity. Conductivity of copper is $5.8 \times 10^7 \text{S/m}$	10	CO1
6.	Assume a conductor, H=5x10 ⁴ ρ^2 a $_{\Phi}$ A/m. (i) Find J (b) Calculate the current through the surface of 0< ρ <2, 0< Φ <2 π , z=0.	5 5	CO2
7.	Derive the relation between Electric field strength and magnetic field strength of an uniform plane wave propagating in free space.	10	CO2
8.	Explain the impedance characteristics and of transmission line with the help of section of length $(1+\lambda/2)$ and $(1+\lambda/4)$.	10	CO4
9.	Write down the analysis of TE wave in rectangular wave guide.	10	CO5
	SECTION-C		2x20=40
10.	Answer any two questions (a) For a transmission line per unit length parameters are $0.01\Omega, 0.5$ Mhm, 5pF/m and		
10.	0.1 ♂m.Find the complex propagation constant at (a) 1MHz (b) 1 GHz.	10	
	(b)A transmission line operating at 50MHz has Zo=50 Ω , α =0.4Np/m, β =1.5 rad/m. Find the transmission line primary parameters R,L,G and C.	10	CO4
11.	(a)Derive the ratio of Electric and magnetic field strength of wave incident		CO3

	normally at the interface of two dielectric materials with constants ε_1 and ε_2 . (b) Write about the $\sigma/\omega\varepsilon$ ratio and explain the demarcation of materials on the	12	
12.	basis of ratio. (a) Draw the following on the smith Chart . The normalizing impedance is 25Ω .	8	
	(i)25+j50 Ω . (ii)0-j60 Ω (iii)constant VSWR circle for ρ =2.0 (iv) $\dot{\Gamma}$ =0.3 \perp 60°	10	CO4
	(b)Derive an Electric field and Magnetic field when the wave incident normally on the conductor.	10	CO3

Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: IV

5

5

10

10

CO₄

CO₁

2x20=40

CO₄

CO₅

: 02 hrs

4--5-20

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Mid Semester Examination, March 2019

SECTION A

Programme Name: B.Tech ECE

Course Name : Engineering Electromagnetism

(a) Write about the cutoff frequency of rectangular wave guide.

(b) Justify the inference of divergence of magnetic field is null.

SECTION-C

(a) For a transmission line per unit length parameters are 0.01Ω , 0.5 Mhm, 5pF/m and

(b) Write down the analysis of TE wave in rectangular wave guide.

Answer any two questions

: ECEG 2012 Course Code

Nos. of page(s) :2

Instructions:

S. No. 1.

2.

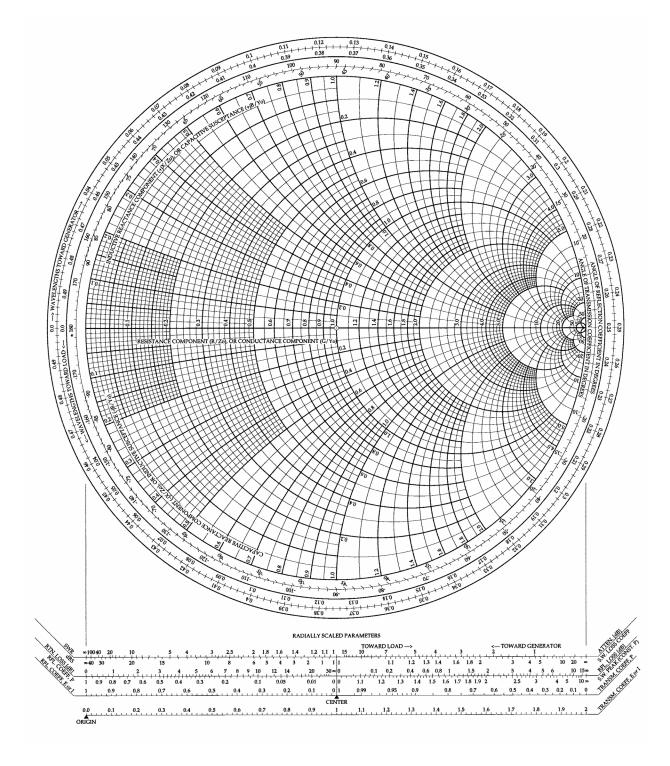
3.

4.

5.

6.

7.


8.

9.

10

SECTION A		4x5=20
	Marks	CO
Define the inconsistency of ampere circuit law		CO1
Write the definitions and expressions for group velocity and phase velocity of a wave.	5	CO2
Explain the categorization of parallel and perpendicular polarization	5	CO3
Write about structure of microstrip		CO5
SECTION B		4x10=40
Answer any four questions		
A free charge of copper is $1.8 \times 10^{10} \text{C/m}^3$. For a current density of $8 \times 10^6 \text{A/m}^2$, find the electric field intensity and drift velocity. Conductivity of copper is $5.8 \times 10^7 \text{S/m}$	10	CO1
Assume a conductor, H=10 ³ $\rho^2 a_{\Phi} A/m$. (i) Find J (b) Calculate the current through the surface of 0< ρ <2, 0< Φ <2 π , z=0.		CO2
Derive an Electric field and Magnetic field when the wave incident normally on the conductor.	10	CO3
Evaluate the secondary constants of thee transmission line section which has the length l, voltage V, current I and the primary constants are resistance R and inductance L conductance G and capacitance C with help of neat sketch	10	CO4

11.	a) Write about the $\sigma/\omega\epsilon$ ratio and explain the demarcation of materials on the basis of ratio.	6	CO3
	(b)Draw the following on the smith Chart .The normalizing impedance is 25 Ω . (i)25+j50 Ω . (ii)0-j60 Ω (iii)constant VSWR circle for ρ =2.0 (iv) $\dot{\Gamma}$ =0.3 \perp 60°	14	CO4
12.	(a)A transmission line operating at 50MHz has Zo=80 Ω , α =0.04Np/m, β =1.5 rad/m. Find the line parameters R,L,G and C. (b)Derive the convection and conduction Currents.	14 6	CO4 CO1

