Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Materials Technology Program: B.Tech Mechatronics Course Code: MEMA 2002 Semester: IV Time 03 hrs. Max. Marks: 100

Instructions: Section A is compulsory. Section B & C have internal choice in question 9 & 11

					SECTI	ON A					
S. No.										Marks	СО
Q 1	Explain the effects of various alloying elements added to carbon steels.						4	CO3			
Q 2	Describe the factors governing the substitutional solubility with an example.							4	CO3		
Q 3	Distinguish between ductile and brittle fracture.							4	C05		
Q 4	Describe briefly the Austempering and Martempering processes.							4	CO4		
Q 5	Explain coring in alloy system. How it can prevent?							4	CO3		
					SECTI	ON B					
Q 6	Explain the principles of construction of T.T.T. diagrams and discuss the effect of various cooling rates on transformation in an eutectoid steel using isothermal transformation diagram.						10	CO4			
Q 7	Draw the equilibrium diagram of iron-carbon system and discuss transformations that takes place from melting point to room temperature at any percentage of carbon.							10	CO2		
Q 8	Metallic iron changes from BCC to FCC at 9100 C. At this temperature, the atomic radii of the iron atom in the two structures are 0.1258 nm and 0.1292 nm respectively. Calculate the volume change in percentage during this structural change.						10	C01			
Q 9	For a Cu-Ni system, draw a phase diagram.										
		Ni %	0	20	40	60	80	100			
		Liquidus Temp	1084	1200	1275	1345	1440	1455		10	CO2
		Solidus Temp(⁰ C)	1084	1165	1235	1310	1380	1455			

	At 50% Ni alloy	find:					
	a) Composib) Composic) Amount						
	The solidus and the phase diagra						
		Compositi on (wt.% Au)	Solidus Temperature (°C)	Liquidus Temperature (ºC)			
		0	1085	1085			
		20	1019	1042			
		40	972	996			
		60	934	946	-		
		80	911 928	911 942	-		
		90 95	928	942			
		100	1064	1064	-		
			SECTIC				
Q 10	Draw the equilib	orium diagram	for the given data:			20	CO2
	Melting temp of Ag = 961° C						
	Melting temp of	C	= 1083				
	Eutectic temp	Cu	$= 780^{\circ}$				
	-	aition		% Cu			
	Eutectic Compo Maximum solu temp) = 8.8% Cu						
	Maximum solut temp) =7.9% Ag						
	The solubility o are around 2% a						
	In detail discuss the following						

	 I. Cooling of an Alloy with 6% Cu II. Cooling of Hypoeutectic alloy with 20% Cu III. Cooling of eutectic alloy with 28.1% Cu IV. Cooling of Hyper eutectic alloy with 50% Cu 		
Q 11	a) Explain Creep in metals. Draw a typical creep curve and explain the three stages of creep.b) Explain the phenomena of Fatigue in metals. Discuss the effect of (i) surface residual stress, and (ii) stress concentration on fatigue strength of metal.		CO5
	 OR a) Explain the term polymorphism. What is meant by allotropy, discuss the term with particular reference to iron. b) Distinguish between hardness and hardenability of steels with examples. Discuss various factors on which hardenability depends. Describe how you would carry out a Jominy test on a steel sample. 	20	CO4