

	Young's modulus is 200 GPa and Rankine constant $\propto=\frac{1}{5000}$.		
Q. 6	Calculate the efficiency of a double riveted double cover butt joint if the plate thickness is of 16 mm . The allowable stresses in tension, shearing and crushing are $100 \mathrm{MPa}, 80 \mathrm{MPa}$ and 200 MPa respectively. Also calculate rivet diameter, gross diameter and pitch length.	10	CO3
Q. 7	The state of stress at a point in a mechanical component is given as, $\sigma_{i j}=\left[\begin{array}{cc} 50 & -30 \\ -30 & -30 \end{array}\right] M P a$ Determine the principal stresses, the principal plane, the maximum shear stress and the plane of maximum shear stress using Mohr's circle (graph paper provided). OR The state of stress at a point in a mechanical component is given as follows, $\sigma_{x}=72 \mathrm{MPa}, \sigma_{y}=-32 \mathrm{MPa}, \tau_{x y}=24 \mathrm{MPa}$.Using Mohr's circle determine, (A) The principal stresses. (B) The principal plane. (C) The stress components $\sigma_{x^{\prime}}, \sigma_{y^{\prime}}, \tau_{x^{\prime} y^{\prime}}$ if x^{\prime}-axis makes an angle of 30° with x-axis (graph paper provided).	10	CO4
Q. 8	Yield strength of the material is $\sigma_{y p}=450 \mathrm{MPa}$ and a factor of safety of 3 is used. An external load P is applied gradually at the end C . Find the maximum value of the force. Find the total strain energy absorbed by the compound rod ABC. Also determine the strain energy densities i.e. resilience in the parts $A B$ and $B C$. Neglect mass of the rod. Take $\mathrm{E}=200 \mathrm{GPa}$.	10	CO2
SECTION-C			
Q. 9	The 38 mm diameter shaft $A B$ is made of a grade of steel for which yield strength is $\sigma_{y p}=350 \mathrm{MPa}$. A force $\mathrm{P}=60 \mathrm{kN}$ is applied as shown. Determine the magnitude of the torque T applied when yielding occurs according to, (A) Maximum principal stress criterion (B) Maximum-distortion-energy criterion. (C) Maximum-shearing stress criterion,	20	CO4

	Modulus of Elasticity, $\mathrm{E}=200 \mathrm{GPa}$, Poisson's Ratio $=0.3$ and $\mathrm{FOS}=4$.		
Q. 10	(A) A beam is used to carry a loading as shown below. The support reactions are represented by R_{1} and R_{2}. The rectangular cross section of the beam has breadth of 60 mm and height of 80 mm . Modulus of elasticity of the beam material is 200 GPa . Determine slope at the first support and deflection at the mid-point of the beam. [12 marks] (B) Plot SFD and BMD for the beam and loading shown above and also locate the point of contra-flexure (if any). Determine the maximum bending stresses in tension as well as in compression at the point of maximum bending moment along the length of the beam. [8 marks] OR (B) Plot SFD and BMD for the beam and loading shown below and also locate the point of contra-flexure (if any). The beam is supported at points A and B. Determine the maximum bending stresses in both tension and compression at the point of maximum bending moment. The rectangular cross-section of the beam has breadth and height of 20 mm and 30 mm respectively. [8 marks]	20	CO1

