

	$\frac{d y}{d x}=-k y, \text { where } k=0.01 .$ Given that $x_{0}=0$ and $y_{0}=100$. Determine how much substance will remain at the moment $x=100$, using Modified Euler's method with the step-length $h=100$.		
SECTION B(Q6-Q8 are compulsory and Q9 has internal choice)			
Q6.	Derive 2-points Gauss-Legendre formula for $I=\int_{-1}^{1} f(x) d x$, and apply it to evaluate $I=\int_{1}^{2} e^{\frac{-x^{2}}{2}} d x$.	[6+4]	CO3
Q7.	Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h=0.1$, given that $\frac{d y}{d x}=x^{2}+y^{2}$ with initial condition $y(1)=1.5$.	[10]	$\mathrm{CO5}$
Q8.	Let $x_{0}=1.6$ be an initial approximation of the root of the following equation. $10 \int_{t=0}^{x} e^{-x^{2}} d t=1$ Use Newton-Raphson method to find a positive root of that equation, correct to six decimal places.	[10]	CO1
Q9.	Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Seidel method to evaluate an approximate solution, taking the initial approximation as $x_{1}^{(0)}=1, x_{2}^{(0)}=1, x_{3}^{(0)}=1$, corrected to three decimal places. $\begin{aligned} & x_{1}-x_{2}+5 x_{3}=7 \\ & 6 x_{1}-x_{2}+x_{3}=20 \\ & x_{1}+4 x_{2}-x_{3}=6 . \end{aligned}$ OR Show that the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 8 & 22 \\ 3 & 22 & 82\end{array}\right]$ is decomposable by Cholesky method. Hence find the solution of the following system of equations by that method. $\begin{aligned} & x_{1}+2 x_{2}+3 x_{3}=5 \\ & 2 x_{1}+8 x_{2}+22 x_{3}=6 \\ & 3 x_{1}+22 x_{2}+82 x_{3}=-10 . \end{aligned}$	[3+7]	CO4

SECTION-C(Q10 is compulsory, and Q11.A and Q11.B have internal choices)			
$\begin{aligned} & \text { Q10. } \\ & \text { A } \end{aligned}$	The speeds of an electric train at various times after leaving one station are given in the following table. Find the distance (in mile), travelled by the train, and acceleration of the train in 2 minutes.	[5+5]	CO1
$\begin{aligned} & \mathrm{Q} 10 \\ & \mathrm{~B} \end{aligned}$	Fit a polynomial of degree three, which takes the following values, by Newton forward interpolation formula, and find $y(3.5)$.	[8+2]	CO2
$\begin{aligned} & \text { Q11. } \\ & \text { A } \end{aligned}$	Solve the Laplace equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the figure by Liebmann's iteration process. Perform five iterations. Solve the Poisson's equation $u_{x x}+u_{y y}=-10\left(x^{2}+y^{2}+10\right)$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length 1 . Perform three iterations by Gauss Seidal method to solve the linear equations in u.	[10]	CO6
$\begin{aligned} & \text { Q11. } \\ & \text { B } \end{aligned}$	Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} \quad$ with the conditions $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{x x}=16 u_{t}, 0<x<1, t>0$,	[10]	CO6

| | given that $u(x, 0)=0, u(0, t)=0, u(1, t)=50 t . ~ C o m p u t e ~$
 steps in t direction taking $h=\frac{1}{4}$. | |
| :--- | :--- | :--- | :--- |

Name: Enrolment No:					
Programme Name: B.Tech ASE and B.Tech ASE+AVE Semester $:$ VI Course Name : Applied Numerical Methods Time $: 03$ hrs Course Code : MATH 307 Max. Marks : 100 Nos. of page(s) $: 03$					
Instructions: Attempt all questions from Section A (Q1-Q5, each carrying 04 marks); Section B (Q6-Q9, each carrying 10 marks); Section C (Q10 \& Q11, each carrying 20 marks). Scientific calculators are allowed for the examination.					
SECTION A(Attempt all questions)					
S. No.				Mark \mathbf{s}	CO
Q1.	Perform value o	ur iterations of $73^{\frac{1}{3}}$ starting wit	ximate	[4]	CO1
Q2.	Establis the forw the step	he operator rela difference a gth).	denote (h is	[4]	CO2

Q3.	Show that the matrix $A=\left[\begin{array}{ccc}2 & 2 & 5 \\ 1 & 1 & -1 \\ 3 & 2 & -3\end{array}\right]$ is not factorable in form of $A=L U$ by Crout's method. Find a new matrix B by rearranging the rows of the matrix A so that B is factorable by that method. Give reason for your answer.	[2+2]	CO4
Q4.	Show that the partial differential equation $u_{x x}-y u_{y y}+u_{y}=0$ is hyperbolic type at upper half of $x y$-plane, elliptic type at lower half of $x y$-plane and parabolic type on x-axis.	[3+1]	CO6
Q5.	Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{d y}{d x}=-\alpha y, \text { where } \alpha=0.02$ Given that $x_{0}=0$ and $y_{0}=100$. Determine how much substance will remain at the moment $x=50$, using Modified Euler's method with the step-length $h=50$.	[4]	CO5
SECTION B(Q6-Q8 are compulsory and Q9 has internal choice)			
Q6.	Derive 2-points Gauss-Legendre formula for $I=\int_{-1}^{1} f(x) d x$, and apply it to evaluate $I=\int_{0}^{1} e^{-x^{2}} d x$.	[6+4]	CO3
Q7.	Use fourth order Runge-Kutta method to solve for $y(0.4)$, considering step-length $h=0.2$, given that $\frac{d y}{d x}=1+y^{2}$ with initial condition $y(0)=0$.	[10]	CO5
Q8.	Let $x_{0}=1.6$ be an initial approximation of the root of the following equation. $5 \int_{t=2 x}^{4 x} e^{-x^{2}} d t=1$ Use Newton-Raphson method to find a positive root of that equation, correct to six decimal places.	[10]	CO1

$\begin{aligned} & \text { Q11. } \\ & \text { A } \end{aligned}$	Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the figure by Liebmann's iteration process. Perform five iterations. Solve the Poisson's equation $u_{x x}+u_{y y}=8 x^{2} y^{2}$ over the square mesh with sides $x=0, y=0, x=3, y=3$ with $u=0$ on the boundary and mesh length 1. Perform three iterations by Gauss Seidal method to solve the linear equations in u.	[10]	CO6
$\begin{aligned} & \text { Q11. } \\ & \text { B } \end{aligned}$	Solve $\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}} \quad$ with the conditions $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$ taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{x x}=u_{t}, 0<x<5, t>0$, given that $u(x, 0)=20, u(0, t)=0, u(5, t)=100$. Compute u for two steps in t direction taking $h=1$.	[10]	CO6

