Name:			S			
Enrolm	Enforment No:					
	UNIVERSITY OF I	PETROLEUM AND EN STUDIES	ERGY	7		
Progra Course	mme Name: B.Tech ASE and B.Tec			VI 03		
	Code: MATH 307page(s): 03	Max. I	Marks : 1	100		
B (Q6-	tions: Attempt all questions from Sec Q9, each carrying 10 marks); Section (ic calculators are allowed for the exam	C (Q10 & Q11, each carrying 20 n nination.		ection		
		CTION A t all questions)				
S. No.			Mark s	СО		
Q1.	Let $x_0=1.5$ be the initial approximate $x^2 + \log_e x - 2 = 0$. Find an approximate root of the equimethod (iteration method), correct up	nation using fixed point iteration	[4]	CO1		
Q2.	Establish the operator relation $E = c$ Shifting and Differential operators re	-	[4]	CO2		
Q3.	Show that the matrix $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 5 \\ 3 & 2 & -3 \end{bmatrix}$ A = LU by Doolittle's method. Find the rows of the matrix A so that B is reason for your answer.	is not factorable in form of a new matrix <i>B</i> by rearranging	[2+2]	CO4		
Q4.	Show that the partia $x^2u_{xx}-2xyu_{xy}-3y^2u_{yy}+u_y=0$ is hy xy-plane except for the coordinate a characteristic of the equation on coordinate $x^2u_{xx}-2xyu_{xy}-3y^2u_{yy}+u_y=0$	perbolic type at every points on exercises $x=0$ and $y=0$. Identify the	[3+1]	CO6		
Q5.	Intensity of radiation is directly remaining radioactive substance. The	proportional to the amount of	[4]	CO5		

	1		1
	$\frac{dy}{dx} = -ky$, where $k = 0.01$.		
	Given that $x_0=0$ and $y_0=100$. Determine how much substance will		
	remain at the moment $x=100$, using Modified Euler's method with the step-length $h=100$.		
	SECTION B		
Q6.	(Q6-Q8 are compulsory and Q9 has internal choice)		
Q0.	Derive 2-points Gauss-Legendre formula for $I = \int f(x) dx$, and apply		
	$\frac{2}{2} - \frac{-x^2}{2}$	[6+4]	CO3
	it to evaluate $I = \int_{1}^{2} e^{\frac{-x^2}{2}} dx$.		
Q7.	Use fourth order Runge-Kutta method to solve for $y(1.2)$, considering step-length $h=0.1$, given that		
	$\frac{dy}{dx} = x^2 + y^2,$	[10]	CO5
	with initial condition $y(1)=1.5$.		
Q8.	Let $x_0 = 1.6$ be an initial approximation of the root of the following equation.		
	$10 \int_{t=0}^{x} e^{-x^2} dt = 1$	[10]	CO1
	Use Newton-Raphson method to find a positive root of that equation,		
00	correct to six decimal places.		
Q9.	Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Gauss-Seidel method to		
	evaluate an approximate solution, taking the initial approximation as		
	$x_1^{(0)} = 1, x_2^{(0)} = 1, x_3^{(0)} = 1$, corrected to three decimal places.		
	$x_1 - x_2 + 5x_3 = 7$		
	$6x_1 - x_2 + x_3 = 20$		
	$x_1 + 4x_2 - x_3 = 6.$		
	OR	[3+7]	CO4
	UK UK		
	Show that the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 8 & 22 \\ 3 & 22 & 82 \end{bmatrix}$ is decomposable by Cholesky		
	method. Hence find the solution of the following system of equations by that method.		
	$x_1 + 2x_2 + 3x_3 = 5$		
	$2x_1+8x_2+22x_3=6$		
	$3x_1 + 22x_2 + 82x_3 = -10.$		

			SECTIO				
Q10. A	(Q10 is compulsory, and Q11.A and Q11.B have internal cho The speeds of an electric train at various times after leaving one station are given in the following table.						
	Time <i>t</i> (in hour)	$\begin{array}{c c}0 & \underline{1}\\ 120\end{array}$	$\frac{1}{60}$	$\frac{1}{40}$	$\frac{1}{30}$	[5+5]	CO1
	Speed v(in mph)Find the distance (ithe train in 2 minut		avelled by	the train, and	40 acceleration of	-	
Q10. B	Fit a polynomial of by Newton forward					10 - 01	GOA
	x 3 y 6		4 24	5 60	6 120	[8+2]	CO2
Q11. A Q11.	Solve the Poisson square mesh with boundary and me Seidal method to so	ies as sho ve iteration A 1 2 D 2 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 5 4 3 5 4 3 5 4 5 5 4 5 5 5 5	bwn in the final field of the	gure by Liebr u_2 u_4 u_4 y_4 y_5 c c c c c c c c	nann's iteration ² +10) over the h $u=0$ on the	[10]	CO6
B	Solve $\frac{\partial u}{\partial t}$ u(0,t)=0, u(4,t)= Bender-Schmidt m steps. Using Crank-Nick	nethod. C	Continue the	solution three	ough five time	[10]	CO6

given that $u(x,0)=0, u(0,t)=0, u(1,t)=50t$. Compute u for two	
steps in t direction taking $h = \frac{1}{4}$.	

Name:	Name: Enrolment No:			
Enrolm				
	UNIVERSITY OF PETROL	EUM AND EN	ERGY	7
	STUDIE	S		
	End Semester Examination,	, May 2019		
	mme Name: B.Tech ASE and B.Tech ASE+AVE			VI
Course hrs	Name : Applied Numerical Methods	Time	:	03
Course	Code : MATH 307 page(s) : 03	Max. I	Marks :	100
B (Q6-0	tions: Attempt all questions from Section A (Q1-Q Q9, each carrying 10 marks); Section C (Q10 & Q1 ic calculators are allowed for the examination.			Section
	SECTION A (Attempt all questions))		
S. No.			Mark s	СО
Q1.	Perform four iterations of bisection method to obtain value of $(17)^{\frac{1}{3}}$ starting with the initial approximation		[4]	CO1
Q2.	Establish the operator relation $D = \frac{1}{h} \ln(1+\Delta)$, where the forward difference and differential operators the step-length).		[4]	CO2

Q3.	Show that the matrix $A = \begin{bmatrix} 2 & 2 & 5 \\ 1 & 1 & -1 \\ 3 & 2 & -3 \end{bmatrix}$ is not factorable in form of $A = LU$ by Crout's method. Find a new matrix <i>B</i> by rearranging the rows of the matrix <i>A</i> so that <i>B</i> is factorable by that method. Give reason for your answer.	[2+2]	CO4
Q4.	Show that the partial differential equation $u_{xx} - y u_{yy} + u_y = 0$ is hyperbolic type at upper half of <i>xy</i> -plane, elliptic type at lower half of <i>xy</i> -plane and parabolic type on <i>x</i> -axis.	[3+1]	CO6
Q5.	Intensity of radiation is directly proportional to the amount of remaining radioactive substance. The differential equation is $\frac{dy}{dx} = -\alpha y, \text{ where } \alpha = 0.02.$ Given that $x_0 = 0$ and $y_0 = 100$. Determine how much substance will remain at the moment $x = 50$, using Modified Euler's method with the step-length $h = 50$.	[4]	CO5
	SECTION B (Q6-Q8 are compulsory and Q9 has internal choice)		
Q6.	Derive 2-points Gauss-Legendre formula for $I = \int_{-1}^{1} f(x) dx$, and apply it to evaluate $I = \int_{0}^{1} e^{-x^{2}} dx$.	[6+4]	CO3
Q7.	Use fourth order Runge-Kutta method to solve for $y(0.4)$, considering step-length $h=0.2$, given that $\frac{dy}{dx}=1+y^2$, with initial condition $y(0)=0$.	[10]	CO5
Q8.	Let $x_0 = 1.6$ be an initial approximation of the root of the following equation. $5 \int_{t=2x}^{4x} e^{-x^2} dt = 1$ Use Newton-Raphson method to find a positive root of that equation, correct to six decimal places.	[10]	CO1

Q9.	Interchange the equations of the following system to obtain a strictly diagonally dominant system. Then apply Jacobi method to evaluate an approximate solution, taking the initial approximation as $x_1^{(0)} = 1, x_2^{(0)} = 1, x_3^{(0)} = 1$, corrected to three decimal places. $2x_1 + 20x_2 - 2x_3 = -44$ $10x_1 + 2x_2 + x_3 = 9$ $-2x_1 + 3x_2 + 10x_3 = 22$. OR Show that the matrix $A = \begin{bmatrix} 4 & 2 & 6 \\ 2 & 82 & 39 \\ 6 & 39 & 26 \end{bmatrix}$ is decomposable by Cholesky method. Hence find the solution of the following system of equations by that method. $4x_1 + 2x_2 + 6x_3 = 16$ $2x_1 + 82x_2 + 39x_3 = 206$ $6x_1 + 39x_2 + 26x_3 = 113$				[3+7]	CO4	
			SECTI		• . • • •	<u> </u>	
Q10. A	The speeds of an station are given in Time $t(in hour)$ Speed $v(in mph)$ Find the distance (electric t the follow $0 \frac{1}{120}$ 0 13 in mile), t	$ \begin{array}{c c} \text{train at var} \\ \text{wing table.} \\ \hline \hline$	$\frac{1}{40}$ 39.5	$\begin{array}{c} \text{leaving one} \\ \hline 1 \\ \hline 30 \\ \hline 40 \end{array}$	es) [5+5]	CO1
Q10. B	the train in 2 minutes.Fit a polynomial of degree three, which takes the following values, by Newton backward interpolation formula, and find $y(5.5)$. x 3456 y 62460120					[8+2]	CO2

Q11. A	Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in the figure by Liebmann's iteration process. Perform five iterations.	[10]	CO6
Q11. B	Solve $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$ with the conditions u(0,t)=0, u(4,t)=0, u(x,0)=x(4-x) taking $h=1$ and employing Bender-Schmidt method. Continue the solution through five time steps. OR Using Crank-Nicholson's method, solve $u_{xx}=u_t, 0 < x < 5, t > 0$, given that $u(x,0)=20, u(0,t)=0, u(5,t)=100$. Compute u for two steps in t direction taking $h=1$.	[10]	CO6