Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Chemical Reaction Engineering II Program: B.Tech. CERP Course Code: CHEG334 Semester: VI Time 03 hrs. Max. Marks: 100

Instructions: (i) This question paper has three sections- A, B and C. All questions of each section are compulsory Question No. 10 has internal choice.

(iii) Attempt all the sub-parts of a question together.

SECTION	A	(20	Marks)

S. No.		Marks	CO
Q 1	Explain the meaning of complete micro-mixing and complete segregation. Give an example from real life (not from reaction engineering) to illustrate and explain in the meaning.	05	CO1
Q 2	Write in brief about the various methods for preparation of catalysts.	05	CO3
Q 3	Does a catalyst alter equilibrium conversion of a chemical reaction? Explain.	05	CO2
Q 4	What is the importance of pores in a catalyst particle? Differentiate micro and macro pore.	05	CO4
	SECTION B (60 Marks)		
Q 5	Discuss in detail about different types of adsorption and derive the Langmuir adsorption isotherm expression for molecular adsorption with suitable assumptions.	12	CO3
Q6	Gaseous feed with A and B ($v_o = 10 \text{ m}^3/\text{hr}$) pass through as experimental reactor packed with the catalyst (W= 4 kg). Reaction occurs as follows: A + B \longrightarrow R + S, -r _A = 0.6 C _A C _B mol/ kg. hr. Find the conversion of reactants if the feed contains C _{Ao} = 0.1 mol/m ³ and C _{Bo} = 10 mol/m ³ .	12	CO4
Q 7	From a pulse input into a vessel we obtain the following output signal and represented by tank-in-series model. Determine the number of tank to use.Time, min13579111315Concentration(arb)0010101000	12	CO2
Q 8	Give significance of Effectiveness factor for solid catalyzed reaction. Derive a relationship between effectiveness factor and Thiele Modulus for first order kinetics.	12	CO4
Q 9	The following data on an irreversible reaction are obtained with decaying catalyst in a batch reactor (batch-solids, batch-fluid) what can you say about kinetics:	12	CO5
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		

	T, hr	0	0.25	0.5	1	2	(∞)		
				ECTION (C (20 marks)				
			51		20 mai ks)				
Q 10	 effect of di A → M i. adse ii. surf adse iii. dese Assume stee (a). Expl example. (b). The ox was studied much highe place: 	kidation of m l with a recycler than feedin CH CH CH CH	transfer may ring the follo between the adsorbed N, and N rolling. s involved hethanol to fe cle. The rate ng rate and re $I_3OH + 0.5 O_2$ $I_2O + 0.5O_2$ $I_2O + 0.5O_2$ 10 liters/hr, % and yield	be neglected owing steps adsorbed A and (OR) in heterog ormaldehydd of circulati emoval of p 02 	ed. and adjacen and adjacen eneous cata le in presence on of the min product. The \Rightarrow CH ₂ O + 1 \Rightarrow CO + H ₂ O \Rightarrow CO + 2H lume = 5 cm ldehyde as 0	t site to prod lytic reaction e of solid of xture (with following r H ₂ O D $_{2}O$ $_{3}^{3}$, C _{Ao} = 6.5		20	CO5

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Chemical Reaction Engineering II Program: B.Tech. CERP Course Code: CHEG334

Semester: VI Time 03 hrs. Max. Marks: 100

Instructions: (i) This question paper has three sections- A, B and C. All questions of each section are compulsory. (iii) Attempt all the sub-parts of a question together.

S. No.	SECTION A (20 Marks)		<u> </u>
	Describe nulse input experiment for DTD successory of	Marks	<u>CO</u>
Q 1	Describe pulse input experiment for RTD measurement.	05	CO1
Q 2	Explain the nature of catalytic surface with suitable examples.	05	CO3
Q 3	Brief the Langmuir Hinshelwood mechanism.	05	CO2
Q 4	What do you mean by rate controlling step in heterogeneous reactions?	05	CO4
	SECTION B (60 Marks)	1	
Q 5	Derive an expression for first order solid catalyzed reaction considering pore diffusion.	12	CO3
Q6	 (a)For a catalytic reaction of type A + B ↔ P what is possible driving force if: (i) Adsorption of A controls the rate. (ii) Surface reaction controls rate. (b) Give reasons for catalyst deactivation. 	12	CO4
Q 7	The concentration reading in given table represents a continuous response to a pulseinput in a closed vessel and is well represented by the dispersion model. Calculatethe vessel dispersion number D/uL. The C versus t tracer response of this vessel is: 0 5 10 15 20 25 30 35	12	CO2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Q 8	The rate law of hydrogenation (H) of ethylene (E) to form ethane (A) over a cobalt- molybdenum catalyst is: $-r_{R} = \frac{k P_{E} P_{H}}{1 + K_{E} P_{E}}$ Suggest a mechanism & rate limiting step consistent with the rate law given.	12	CO4
Q 9	The following kinetic data on the reaction $A \rightarrow R$ are obtained in an experimental packed bed reactor using various amounts of catalysts and a fixed feed rate $F_{A0}=10$ kmol/hr. (a) Find the reaction rate at 40% conversion	12	CO5

W, K _f	1	$\frac{d}{2}$	3	4	5	6	7		
X _A	0.12	0.20	0.27	0.33	0.37	0.41	0.44		
			SECT	FION-C (2	0 marks)				
(b). In th	e case of	catalyst de	caving, it	is practice	d to feed v	vith the ne	w catalyst to		
keep the	level of	2	onstant. Th given by	1	between		w catalyst to n, activity of	20	COS