Name:

Enrolment No:

15 UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name: B Tech Mechanical Engineering
Course Name : Heat Transfer
Course Code : GNEG356
Semester : VI
Time : 03 hrs
Max. Marks : 100
Nos. of page(s) : 5

- Section A constitutes of 20 Marks (5 questions x 4 marks); Attempt All.
- Section B constitutes of 40 Marks (5 questions of 8 marks each). Attempt All (One choice question).
- Section C constitutes of 40 Marks (2 question worth 20 marks). Attempt All (One choice question).
- Question \#7 and Question\#11 have options. Please answer only one of the options.
- Please answer the sub-parts of a question together. Highlight the numerical answers.

SECTION A

S. N.		Marks	CO
Q1	Figure below shows a multiple effect evaporator with five effects (flow is from I $\rightarrow \mathrm{V}$) at Gopal Juice Company How do these compare (increasing, decreasing or equal) in the different effects a) The temperature of the inlet vapors. b) The pressure maintained in these different effects. NO EXPLANATIONS REQUIRED.	[4]	$\mathrm{CO5}$
Q2	An analysis of the comparison between diurnal and nocturnal temperatures at India's biggest metros - Delhi and Mumbai reveals an interesting trend. The temperature swings are much larger in Delhi as compared to Mumbai. What is ONE SINGLE most important reason behind this? Explain.	[4]	$\mathrm{CO5}$
Q3	Ramnath Luhaar, a roadside blacksmith takes an iron piece and immerses in a hot flame at $t_{1}=0$ and keeps it inside the flame till $t_{2}=10$ minutes. He reports that he did observe	[4]	CO2

	that the color of the metallic piece changes. What color changes is expected to be observed? Explain by drawing the wavelength spectra at time intervals t_{1} and t_{2}. Will the metal ever appear blue? Justify.		
Q4	In a country-side road event, Jaadugar Shakuni Sarkar shows a wonderful show amidst the loud uproar of cheering people. The magician claims - 'I can defy the laws of Science. Just wait and watch!'. The magician climbs over a platform on which a colored liquid was being boiled in a glass beaker on a flame. He takes it off the flame, closes the lid and shouts after an half an hour (when the liquid has cooled down) - Today, I will make "hot ice" by my powers. He shouts - 'Aabra ca daabra, hocus pocus' takes the "hot ice" and touches it to the glass beaker. Surprisingly, the liquid actually starts boiling. The people cheer and hand out loads of 10-rupee notes. How did Shakuni Sarkar manage to do this? What is your assessment? Explain.	[4]	CO3
Q5	Boiling is effected at the base of a bubble column by heating a hot plate and bubbles are being generated at the base. Assuming vertically upward direction as the +ve x-axis, draw approximate curves for the bubble size as a function of x for the case of subcooled boiling. Explain.	[4]	CO5
Q6			

	OR The temperature distribution in a cylindrical stainless fin (thermal conductivity 0.17 $\mathrm{W} / \mathrm{cm}^{\circ}{ }^{\circ} \mathrm{C}$) of constant cross-sectional area of $2 \mathrm{~cm}^{2}$ and length of 1 cm , exposed to an ambient of $40^{\circ} \mathrm{C}$ (with a surface heat transfer coefficient of $0.0025 \mathrm{~W} / \mathrm{cm}^{\circ} \mathrm{C}$) is given by $T-T_{\infty}=3 x^{2}-5 x+60$ where T is in ${ }^{\circ} \mathrm{C}$ and \boldsymbol{x} (distance from the fin base) in in cm . If the base temperature is $100^{\circ} \mathrm{C}$, then find the heat dissipated by the fin surface.		
Q8	Two cylinders of radius r_{1} and r_{2} and length L are placed concentrically. The outer surface of inner cylinder is marked as 1 whereas the inner surface of the outer cylinder is marked as 2 . Determine all four view factors F_{ij} for $i, j=1,2$.	[8]	CO3
Q9	A solid iron sphere with surface temperature T_{s} is suspended in a room with ambient temperature T_{o} a. For $T_{s}>T_{o}$ and $T_{s}<T_{o}$, show the boundary layer development for both cases. b. Plot the variation of $N u$ with respect to the angle from the horizontal (angle increasing counterclockwise) for both the cases on the same axis.	[8]	CO2
Q10	A household oven door of $0.5-\mathrm{m}$ height and $0.7-\mathrm{m}$ width reaches an average surface temperature of $32^{\circ} \mathrm{C}$ during operation. Estimate the heat loss to the room with ambient air at $22^{\circ} \mathrm{C}$. If the door has an emissivity of 1.0 and the surroundings are also at $22^{\circ} \mathrm{C}$, comment on the heat loss by free convection relative to that by radiation.	[8]	CO1
SECTION-C			
Q11	Air at a temperature of 20 deg C is incident on an isothermal hot flat plate with a velocity of $10 \mathrm{~m} / \mathrm{s}$. (a) Determine shear stress at the trailing edge. (b) Determine average shear stress on the plate. (c) Determine the heat flux at the trailing edge. (d) Determine the total heat transfer from the plate to the air.	[20]	CO2

	(e) Determine the thermal boundary layer thickness at the trailing edge. (a-e above) OR (the question below) Air at a free stream temperature of $T_{\infty}=\dot{i} 20^{\circ} \mathrm{C}$ is in parallel flow velocity $5 \mathrm{~m} / \mathrm{s}$ with over a flat plate of length $\mathrm{L}=5 \mathrm{~m}$ and temperature $T_{s}=i 90^{\circ} \mathrm{C}$. However, obstacles placed in the flow intensify mixing with increasing distance x from the leading edge, and the spatial variation of temperatures measured in the boundary layer is correlated by an expression of the form $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=20+70 \exp (-600 \mathrm{xy})$, where x and y are in meters. (a) Determine and plot the manner in which the local convection coefficient h varies with x . (b) Evaluate the average convection coefficient h for the plate. (c) Estimate the average drag coefficient on the plate using Chilton-Colburn Analogy. (d) What is the total shear drag force on the plate?		
Q12	Water ($C p=4180 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$) enters the $2.5-\mathrm{cm}$ internal-diameter tube of a double-pipe counter-flow heat exchanger at $17^{\circ} \mathrm{C}$ at a rate of $3 \mathrm{~kg} / \mathrm{s}$. Water is heated by steam condensing at $120^{\circ} \mathrm{C}\left(h_{\mathrm{fg}}=2203 \mathrm{~kJ} / \mathrm{kg}\right)$ in the shell. If the overall heat transfer coefficient of the heat exchanger is $900 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$, determine the length of the tube required in order to heat the water to $80^{\circ} \mathrm{C}$ using (a) the LMTD method and [5] (b) the ε-NTU method. [5] (c) Draw the velocity profiles, beginning from the pipe entrance to the point flow has become fully developed. Also, draw the temperature profiles, beginning from the pipe entrance to the point flow has become fully developed. [5] (d) Estimate the thermal and hydrodynamic entry lengths for flow of water inside the pipe. [5]	[20]	CO4

Data-sheet

- Correlations for flat vertical plate

In forced convection, $N u=C R e^{m} P^{n}$ and $C_{D f}=B R e^{H}(C, m, n, B, H$ are given below respectively)

Type of Convection (Flat Plate)	Remark	Given Parameters
Free Convection (Vertical plate)	$\mathrm{Ra}=10^{4}-10^{9}$	$\mathrm{Nu}=0.59 \mathrm{Ra}^{1 / 4}$
Free Convection (Vertical plate)	$\mathrm{Ra}=10^{9}-10^{13}$	$\mathrm{Nu}=0.1 \mathrm{Ra}^{1 / 3}$
Laminar Local Isothermal		$0.332 ; 0.5 ; 0.33 ; 0.664 ;-0.5$
Laminar Local Isoflux		$0.453 ; 0.5 ; 0.33 ; 0.664 ;-0.5$
Turbulent Local Isothermal	$5 \mathrm{e} 5<\mathrm{Re}<1 \mathrm{e} 7 ; 0.6<=\mathrm{Pr}<=$ 60	$0.0296 ; 0.8 ; 0.33 ; 0.0592 ;-0.2$
Turbulent Local Isoflux	$5 \mathrm{e} 5<\mathrm{Re}<1 \mathrm{e} 7$	$0.0308 ; 0.8 ; 0.33 ; 0.0592 ;-0.2$
Laminar Averaged Isothermal	$\mathrm{Pr}>=0.6$	$0.664 ; 0.5 ; 0.33 ; 1.328 ;-0.5$
Laminar Averaged Isoflux	5e5 $<\mathrm{Re}<1 \mathrm{e} 7 ; 0.6<=\mathrm{Pr}<=$	$0.906 ; 0.5 ; 0.33 ; 1.328 ;-0.5$
Turbulent Averaged Isothermal	$0.037 ; 0.8 ; 0.33 ; 0.074 ;-0.2$	
Turbulent Averaged Isoflux		$0.0385 ; 0.8 ; 0.33 ; 0.074 ;-0.2$
Combined $\mathrm{BL}($ Isothermal $)$ $5 \mathrm{e} 5<\mathrm{Re}<1 \mathrm{e} 7 ; 0.6<\operatorname{Pr}<60$	$C_{f}=\frac{0.074}{\mathrm{Re}_{L}^{1 / 5}}-\frac{1742}{\mathrm{Re}_{L}}$	$\mathrm{Nu}=\left(0.037 \mathfrak{R}_{L}^{4 / 5}-871\right) \mathrm{Pr}^{1 / 3}$

- Fluid properties

	Air (300 K)	Air (328 K)	Air(333 K)	Water(321.5K)
Kinematic viscosity $\left(\mathrm{m}^{\wedge} 2 / \mathrm{s}\right), \boldsymbol{v}=$	$1.594 \mathrm{E}-05$	$1.872 \mathrm{E}-05$	$1.923 \mathrm{E}-05$	$5.533 \mathrm{E}-07$
Thermal Conductivity $(\mathrm{W} / \mathrm{mK}), \mathbf{k}=$	0.03	0.03	0.03	0.64
Specific heat $\mathrm{J} /(\mathrm{kg} \mathrm{K}), \mathbf{C}_{\boldsymbol{p}}=$	1007.02	1007.87	1008.09	4066.15
Dynamic Viscosity $(\mathrm{Pa} \mathrm{s}), \boldsymbol{\mu}=$	$1.850 \mathrm{E}-05$	$1.983 \mathrm{E}-05$	$2.006 \mathrm{E}-05$	$5.469 \mathrm{E}-04$
Density $\left(\mathrm{kg} / \mathrm{m}^{\wedge} 3\right), \boldsymbol{\rho}=$	1.16	1.06	1.04	988.41
Prandtl Number, $\mathbf{P r}=$	0.71	0.70	0.70	3.46

If you find that some required Air/ Water Properties are missing, use the most accurate fluid property from the above table. You must state this explicitly in your solution in such a case!

