Name:					
Enrolment No:					
	UNIVERSITY OF PETROLEUM AND ENERGY ST	UDIES			
D	End Semester Examination, May 2019		VI		
0	Programme Name:B. Tech. (PSE)SemestCourse Name:Steam Turbine & its AuxiliariesTime				
		Inne : Iax. Marks:	: 03 hrs Marks: 100		
	f page(s) : 2	ium iviui no.	100		
	ctions: All questions are compulsory				
	SECTION A				
S. No.		Marks	CO		
Q1	State the function of 'Air Extraction System' used in a Steam Condenser. Expl with the help of suitable diagram an 'Air Ejector'.	ain 4	CO1		
Q2	Explain at least four primary functions of the 'Turbine Governing System'.	4	CO2		
Q3	Discuss the four primary functions of the 'Condensate system'.	4	CO2		
Q4	Explain the importance of 'DC Emergency Oil Pump' in Turbine Oil System.	4	CO3		
Q5	Enumerate the advantages & disadvantages between 'Vertical mounted' 'Horizontally mounted' Feed Water Heater.	& 4	CO1		
	SECTION B				
Q6	Enumerate four primary functions of the 'Turbine Oil System' along with	the			
X ²	major equipment(s) used in the same.	10	CO4		
Q7	Explain at least four ways of starting a TPP station from cold condition having Boiler Feed Pump (BFP) configuration as (1X50% MD-BFP + 2X50% TD-BFP). 10	CO3		
Q8	Explain with the help of appropriate figure the following types of 'Cooling Towers' along with their respective application:1. IDCT2. FDCT	10	CO2		
Q9	Explain the 'On-load detection' method of 'Air leakage' in condenser shell. OR	10	СОЗ		
	Explain the 'Off-load detection' method of 'Air leakage' in condenser shell. SECTION-C				
Q10	(A)Below given are the NDCT parameters:	12 + 8	CO3		
	 Cooling Water temperature at condenser inlet = 32 Deg.C Cooling Water temperature at condenser outlet = 37 Deg.C 				
	• Cooling Water temperature at condenser outlet -37 Deg.C • Cooling Water flow $= 1500 \text{ M}^3/\text{ Hr}$				
	 Drift Loss from the Cooling Tower a 1300 M77 III b 1300 M77 III c 1300 M77 III c 1300 M77 III 				
	• Evaporation loss from the Cooling Tower = 0.84%				

	 Cycle of Concentration (COC) = 3 Calculate the following: Cooling Tower Blow down losses Total loss from the Cooling Tower Make-up water requirement per day (B) Explain with the help of appropriate diagram the following: Closed loop Cooling Water system Open loop Cooling Water system 		
Q 11	 (A) The velocity of steam entering a simple impulse turbine is 1000 m/sec and the nozzle angle is 20 Deg. The peripheral velocity of blades is 400 m/sec and the blades are symmetrical. Calculate the blade angles. If the relative velocity at exit is reduced by friction to 80% of that at inlet, calculate the following: Tangential force on the blades Diagram Power for a mass flow of 0.75 Kg/sec Axial Thrust Diagram efficiency (B) Explain the following along with appropriate diagram indicating their point of application: Phosphate dosing system Hydrazine dosing system 	12 + 8	CO4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Name:B. Tech. (PSE)Course Name:Steam Turbine & its AuxiliariesCourse Code:PSEG 318Nos. of page(s):2

Semester : VI Time : 03 hrs Max. Marks: 100

Instructions: All questions are compulsory

SECTION A

S. No.		Marks	CO
Q1	Explain the function of the 'De-aerator' in 'Turbine Condensate re-circulation system' .	4	C01
Q2	Explain the importance of 'Turbine Governing system' with the help of Speed Sensing logic diagram.	4	CO2
Q3	Enumerate & explain three primary applications of 'Turbine Oil System' .	4	CO2
Q4	 With the help of appropriate figure, explain the following types of Cooling Towers: 1) NDCT 2) Dry type Cooling Tower 	4	CO3
Q5	Explain the method of detection of CW leakage from the condenser tube during 'On-load' condition.	4	CO1
	SECTION B		
Q6	Explain the five primary functions of the 'Condensate Extraction Pumps (CEP)'.	10	CO4
Q7	 Analyze the advantages & disadvantages of having 2 X 100% and 3 X 50% configuration Condensate Extraction Pumps (CEP) w.r.t a) Capital Cost b) Operating Cost (inclusive of maintenance expenditure) c) Operational flexibility & economics 	10	CO3
Q8	 Explain with the help of appropriate figure the following types of 'Cooling Towers' along with their respective application: 1. Wet Cooling Tower 2. Dry Cooling Tower 	10	CO2
Q9	With the help of neat diagram, explain 'Direct Contact type Heat Exchanger' used in Turbine Condensate re-circulation system along with their specific application. OR With the help of neat diagram, explain 'Surface type Heat Exchanger' used in Turbine Condensate re-circulation system along with their specific application.	10	CO3
	SECTION-C		
Q10	 (A) For a surface condenser used in a TPP, calculate the rate of flow of Cooling Water (CW) and the Cooling Ratio having the following parameters: Total amount of turbine exhaust steam = 20 Kg/ sec Final condensate temperature = 25 Deg.C 	12 + 8	CO4

	• CW temperature at condenser I/L	=	15 Deg.C		
	• CW temperature at condenser O/L	=	22 Deg.C		
	• Enthalpy of steam at Condenser I/L	=	2500 KJ/ Kg		
	Consider, heat capacity of water	=	4.19 KJ/ Kg/ Deg.C		
	(B) Explain the various types of losses in a Cooli	ng Towe	rs.		
Q 11	 (B) Explain the various types of losses in a Cooling Towers. (A) The velocity of steam entering a simple impulse turbine is 1000 m/sec and the nozzle angle is 20 Deg. The peripheral velocity of blades is 400 m/sec and the blades are symmetrical. If the steam is to enter the blades without shock , what will be the blade angle. Neglecting the friction effects on the blades, calculate the 1) Tangential force on the blades 2) Diagram Power for a mass flow of 0.75 Kg/sec 3) Axial Thrust 4) Diagram efficiency (B) Give reasons, why it is not possible to condense the Turbine exhaust steam into condensate by increasing the pressure inside the condenser instead of taking 			12 + 8	CO3