Name: Enrolment No:		UNIVERSITY WITH A PURPOSE	
SECTION A			
S. No.		Marks	CO
Q1	On the basis of isopluvial maps the 50 year- 24 hour maximum rainfall at Bangalore is found to be 16.0 cm . Determine the probability of a 24 h rainfall of magnitude 16.0 cm occurring at Bangalore:(a)Once in ten successive years.(b)Twice in ten successive years.(c)At least once in ten successive years.	4	CO1
Q2	A class A pan was set up adjacent to a lake. The depth of water in the pan at the beginning of a certain week was 195 mm . In that week there was a rainfall of 45 mm and 15 mm of water was removed from the pan to keep the water level within the specified depth range. If the depth of the water in the pan at the end of the week was 190 mm , calculate the pan evaporation. Using a suitable pan coefficient estimate the lake evaporation in that week.	4	CO1
Q3	The infiltration process at capacity rates in a soil is described by Kostiakov's equation as: $\mathbf{F}_{\mathrm{p}}=\mathbf{3 . 0 \mathbf { t } ^ { 0 . 7 }}$ Where, F_{p} is cumulative infiltration in cm and t is time in hours. Estimate the infiltration capacity at 3.0 h from the start of infiltration.	4	CO2
Q4	What is the classification of irrigation water having the following characteristics: concentrations of Na, Ca and Mg are 22,3 and 1.5 mEq per litre respectively and the electrical conductivity is 200 micro mhos per cm at $25^{\circ} \mathrm{C}$?	4	CO3
Q5	Explain the advantages of sprinkler irrigation.	4	CO3
SECTION B			
Q6	A catchment has four sub-areas. The annual precipitation and evaporation from each of the sub-areas are given below. Assume that there is no change in the groundwater storage on an annual basis and calculate for the whole catchment the values of annual average (i) precipitation, and (ii) evaporation. What are the annual runoff coefficients for the sub-areas and for the total catchment taken as a whole?	10	CO1

SECTION-C

| Q10 | a)An irrigation channel is to be constructed in coarse alluvium gravel with D-
 75 size of 5cm. The channel has to carry discharge of 3 cumecs and the
 longitudinal slope is 0.01. The banks of channel will be protected by grass
 against scouring. Find the minimum width of the channel. | $\mathbf{1 0 + 1 0}$ | $\mathbf{C O 4}$ |
| :--- | :--- | :--- | :--- | :--- |
| b)Design a regime channel for a discharge of 50 cumecs and silt factorl.1 using
 Laceys's theory. | OR | | |
| Q10 | Design an irrigation channel to carry 40 cumecs of discharge with base to width ratio
 of 2.5. The critical velocity ratio is 1. Assume a suitable value of Kutter's rugosity
 coefficient and use Kennedy's method. | $\mathbf{2 0}$ | $\mathbf{C O 4}$ |
| Q11 | What are the objectives of river training works? With the help of a neat diagram
 discuss the factors governing the design of top level, shape, length, radius and slope
 pitching of Guide banks. | $\mathbf{5 + 1 5}$ | $\mathbf{C O 5}$ |

	respectively. The instrument at station T was inoperative during that storm. Estimate the rainfall at station T during that storm.		
	OR		
Q8	Explain a procedure for checking a rainfall data for consistency with the help of an example and a graph.	10	CO1
Q9.	Determine the field capacity of a soil from the following data: a) Depth of root zone $\quad=1.8 \mathrm{~m}$ b) Existing moisture $\quad=8 \%$ c) Dry density of soil $\quad=1450 \mathrm{~kg} / \mathrm{m}^{3}$ d) Quantity of water applied to soil $=650 \mathrm{~m}^{3}$ e) Water lost in deep percolation and evaporation $=10 \%$ f) Area to be irrigated $=1000 \mathrm{~m}^{3}$	10	CO3
	SECTION-C		
Q10	The following hydraulic data pertains to a bridge site of a river: Max. Discharge $=6000$ cumecs HFL $\quad=104 \mathrm{~m}$ River Bed Level $=100 \mathrm{~m}$ Average diameter of river bed material $=0.1 \mathrm{~m}$ Design and sketch Bell's Bunds including the launching apron to train the river.	20	CO5
	OR		
Q10	a) The head regulator of a canal has 3 openings 3 m wide. The water is flowing between the upper and lower gates. The vertical opening of the gates is 1 m . The head on the regulator is 0.45 m (Afflux). If the u / s water level rises by 0.2 m , find how much the upper gates must be lowered to maintain the canal discharge unaltered. b) Discuss the various losses in tunnels and discuss their equations.	10+10	CO5
Q11	A canal is to be designed to carry a discharge of 56 cumecs. The slope of the canal is 1 in 1000 . The soil is coarse alluvium having a grain size of 5 cm . assuming the canal to be unlimited and of a trapezoidal section, determine a suitable section for the canal, Φ may be taken as 37°.	20	CO4

