Name:

Enrolment No:

Semester

Max. Marks : 100

Time

: VI

: 03 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Programme Name: B TECH CIVIL ENGINEERING

Course Name : Water Resources Engineering

Course Code : CIVL 3008

Nos. of page(s) : 3

Instructions: Attempt all the questions and assume the necessary data within suitable limits

Set A

SECTION A

S. No.		Marks	CO
Q1	On the basis of isopluvial maps the 50 year-24 hour maximum rainfall at Bangalore is found to be 16.0 cm. Determine the probability of a 24 h rainfall of magnitude 16.0 cm occurring at Bangalore:(a)Once in ten successive years.(b)Twice in ten successive years.(c)At least once in ten successive years.	4	CO1
Q2	A class A pan was set up adjacent to a lake. The depth of water in the pan at the beginning of a certain week was 195 mm. In that week there was a rainfall of 45 mm and 15mm of water was removed from the pan to keep the water level within the specified depth range. If the depth of the water in the pan at the end of the week was 190 mm, calculate the pan evaporation. Using a suitable pan coefficient estimate the lake evaporation in that week.	4	C01
Q3	The infiltration process at capacity rates in a soil is described by Kostiakov's equation as: $\mathbf{F}_{p} = 3.0t^{0.7}$ Where, F_{p} is cumulative infiltration in cm and t is time in hours. Estimate the infiltration capacity at 3.0 h from the start of infiltration.	4	CO2
Q4	What is the classification of irrigation water having the following characteristics: concentrations of Na, Ca and Mg are 22, 3 and 1.5 mEq per litre respectively and the electrical conductivity is 200 micro mhos per cm at 25°C?	4	CO3
Q5	Explain the advantages of sprinkler irrigation.	4	CO3
	SECTION B		
Q6	A catchment has four sub-areas. The annual precipitation and evaporation from each of the sub-areas are given below. Assume that there is no change in the groundwater storage on an annual basis and calculate for the whole catchment the values of annual average (i) precipitation, and (ii) evaporation. What are the annual runoff coefficients for the sub-areas and for the total catchment taken as a whole?	10	CO1

	Sub-Area	Area Mm ²	Annual		Annual				
			Precipitat	tion (mm)	Evapora	tion (mm)			
	Α	10.7	1030		530				
	В	3	830		438				
	С	8.2	900		430				
	D	17	1300		600				
			OR						
Q6	Explain a proced example.	ure for supplen	nenting the r	nissing raint	fall data wi	ith the help of a	n	10	CO1
Q7	 Given the following data about a catchment of area 100 km2, determine the volume of surface runoff and peak surface runoff discharge corresponding to a storm of 60 mm in1 hour. 							10	CO2
		Time (h)	0 1	2 3	4 5			10	CO2
		Rainfall (mm) Runoff (m ³ /s)	0 40 300 300	0 0 1200 450	0 0 300 300				
Q8.	From the data given below, find the flood discharge for a return period for of 1000 years.								
		Return peri	od (Years)	Peak Flo	od (m ³ /s)			10	CO2
		100		435		_			
Q9.	800 m ³ of water	50	armer's rice	395	hectares	 When the moist	hire		
Q7.	content in the sol %) of soil and determine the fi Assume porosity	il falls to 40 % permanent w eld application	of the availation of the availating point	able water b (15%) of	etween the the soil	e field capacity crop combination	(36 ion,	10	CO3
			SE	CTION-C					
Q10	75 size o longitudin against sc	of 5cm. The cl nal slope is 0.0 couring. Find th regime channel	hannel has t 1. The banl e minimum for a discha	to carry disc of channe width of the arge of 50 cu	charge of el will be channel.	um gravel with 3 cumecs and protected by gr silt factor1.1 us	the rass 1	0+10	CO4
			OR						
Q10	Design an irrigation channel to carry 40 cumecs of discharge with base to width ratio of 2.5. The critical velocity ratio is 1. Assume a suitable value of Kutter's rugosity coefficient and use Kennedy's method.							20	CO4
Q11	What are the ob discuss the factor pitching of Guide	jectives of rive rs governing th	er training v		-	-		5+15	CO5

Name: Enrolmo	ime: irolment No:							
Prograi		Y OF PETRO nd Semester E ENGINEERIN	xaminatior			er : VI		
0	Course Name : Water Resources Engineering Time					: 03 hrs		
Course		8 8			Max. M	arks : 100)	
Nos. of	page(s) : 3							
Instruc	tions: Attempt all the questions	s and assume the	e necessary	data with	in suitable limits			
			Set B					
		SEC	CTION A					
S. No.						Marks	CO	
Q1	Consider the statement: The	e 100 year-24 l	nour maxin	num rain	fall at Bangalore is			
X 1	1600 mm. What do you unde			iuiii iuiii	un ut Dungulore is	4	CO1	
Q2	What is the role of evapotran			gy?		4	C01	
Q3	Why is base flow separated f				cess of developing a	_		
X 2	unit hydrograph?		y aro gruph r	n uie pro	cess of developing d	4	CO2	
Q4	Explain the advantages of dri	p irrigation.				4	CO3	
Q5			$\frac{1}{864} \text{ km}^{2}/\text{cr}$	imecs on	the field the base	-		
25	Find the delta for a crop when its duty is 864 km ² /cumecs on the field, the base period is 10 weeks.					4	CO3	
Q6	Results of an infiltrometer to	est on a soil ar	CTION B e given bel	low. Dete	rmine the Horton's			
	infiltration capacity equation	for this soil.						
	Time since start 5 10	15 25 4	0 60 7	75 90	110 130			
	in minutes	15 25 4		5 70	110 150	10	CO2	
	Cumulative					10	001	
	infiltration in mm 21.0 36.0	0 47.6 56.9 63	3.8 69.8 74	4.8 79.3	87.0 92.0			
Q7	Flood –frequency analysis f			Gandhisa	gar dam, by using			
	Gumbel's method, yielded th	e following resu	ilts:					
							G Q A	
		Return period (Years) Peak Flood (m ³ /s) 100 425				10	CO2	
	100		435 395					
		s river with a re		of 500 y	 Pars			
Q8	Estimate the magnitude in this river with a return period of 500 years. The normal annual precipitation of five rain-gauge stations P, Q, R, S and T are					10	C01	
×°	respectively 125, 102, 76, 113 and 137 cm. During a particular storm the						001	
	precipitation re-corded by stations P, Q, R, and S are 13.2, 9.2, 6.8 and 10.2 cm							

	respectively. The instrument at station T was inoperative during that storm. Estimate		
	the rainfall at station T during that storm. OR		
Q8	Explain a procedure for checking a rainfall data for consistency with the help of an example and a graph.	10	C01
Q9.	Determine the field capacity of a soil from the following data: a) Depth of root zone = 1.8m b) Existing moisture = 8% c) Dry density of soil = 1450 kg/m ³ d) Quantity of water applied to soil = 650 m ³ e) Water lost in deep percolation and evaporation = 10 % f) Area to be irrigated = 1000 m ³	10	CO3
	SECTION-C		
Q10	The following hydraulic data pertains to a bridge site of a river:Max. Discharge = 6000 cumecsHFL = 104mRiver Bed Level = 100mAverage diameter of river bed material = 0.1mDesign and sketch Bell's Bunds including the launching apron to train the river.	20	C05
	OR		
Q10	 a) The head regulator of a canal has 3 openings 3m wide. The water is flowing between the upper and lower gates. The vertical opening of the gates is 1m. The head on the regulator is 0.45m (Afflux). If the u/s water level rises by 0.2m, find how much the upper gates must be lowered to maintain the canal discharge unaltered. b) Discuss the various losses in tunnels and discuss their equations. 	10+10	C05
Q11	A canal is to be designed to carry a discharge of 56 cumecs. The slope of the canal is 1 in 1000. The soil is coarse alluvium having a grain size of 5cm. assuming the canal to be unlimited and of a trapezoidal section, determine a suitable section for the canal, Φ may be taken as 37 ^o .	20	CO4