

Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

### End Semester Examination, May 2019

SECTION A

**Course: Production Engineering and Well Testing & Analysis Program: M.Tech (Petroleum Engineering) Course Code: PEAU 7006**  Semester: II<sup>nd</sup> Time 03 hrs. Max. Marks: 100

**Instructions:** All the questions are compulsory.

| S. No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks | CO  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | A 0.5 ft. diameter hole has a damaged region 4ft. deep. The permeability in this region is one tenth that of the undamaged region. Estimate skin effect and effective wellbore radii.                                                                                                                                                                                                                                                                                                           | 4     | CO3 |
| Q 2    | Construct IPR curve for given problem:<br>Given data: $\dot{P}_r = 2600$ psi; $P_{wf} = 1900$ psi; $q_o = 150$ bpd<br>Find: $(q i i o) max i$ and $q_o$ for $P_{wf} = 1100$ psi                                                                                                                                                                                                                                                                                                                 | 4     | CO1 |
| Q 3    | Illustrate the causes of sand production. Write the methods for control sand production.                                                                                                                                                                                                                                                                                                                                                                                                        | 4     | CO2 |
| Q 4    | Differentiate between carryover and blowby for the storage of oil and gas.                                                                                                                                                                                                                                                                                                                                                                                                                      | 4     | CO2 |
| Q 5    | Illustrate how a typical Drill Stem Test is performed. Prepare and examine a schematic chart of pressure vs. time from a test with two flow periods and two shut in periods.                                                                                                                                                                                                                                                                                                                    | 4     | CO4 |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |     |
| Q 6    | Figure shows a well located between two sealing faults at 200 and 100 feet from the two faults. The well is producing under a transient flow condition at a constant flow rate of 200 STB/day. The following additional data is available: B =1.1 bbl/STB; $\mu$ = 2.0 cp; $r_w$ = 3.0 ft; Ct = 25×10 <sup>-6</sup> psi <sup>-1</sup> ; k = 60 md; $\Phi$ = 17%; h = 25 ft; P <sub>i</sub> = 5000 psi; Ei (0.537) = 0.514; Ei (2.15) = 0.0476. Calculate the sand face pressure after 10 hours. | 10    | CO3 |

|      | Fault 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.                                                                                       | 100'<br>100'                                                                                     | 200'                                                                                     | 200'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nage Wel                                                | I                                                        |     |     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-----|-----|
| Q 7  | A new oil well with an days, it then was shut in data were recorded. If the ft; formation volume to compressibility, $C_t$ is 2 Formation Permeability at Shut-in Time, $\Delta t$ (hrs.)<br>$P_{ws}(psig)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for a presse wellbore r $\hat{c}$ actor, $B_o$ is $0 \times 10^{-6}$ psod Skin Fact021150 | ting bou<br>ure build<br>adius, $r_w$<br>s 1.3 R<br>si <sup>-1</sup> ; and<br>or.<br>4<br>24 182 | andary prod<br>up test, du<br>is 0.3 ft; ne<br>B/STB; pe<br>oil viscosit<br>8<br>23 1850 | ring which the sand the sand the sand the sand the set of the sand the san | ch the f<br>nickness<br>φ is 0<br>1.0 cp.<br>24<br>1890 | ollowing   s, h is 22   .2; total   estimate   48   1910 | 10  | CO4 |
| Q 8  | What are the parameters a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gas. Des                                                | scribe the                                               | 10  | CO2 |
| Q 9  | working procedure of vertical heater-treater with suitable diagram.Estimate the oil permeability, skin factor and additional pressure drop due to the skin<br>from the following drawdown data: h = 130ft., $\phi = 20\%$ , $r_w = 0.25$ ft., $p_i = 1154$ psi,<br>$q_o = 348$ stb/d, m = -22 psi/cycle, $B_o = 1.14$ bbl/STB, $\mu_o = 3.93$ cp,<br>$C_t = 8.74 \times 10^{-6}$ psi <sup>-1</sup> , $p_{1hr} = 954$ psi. Assuming that the wellbore storage effect is not<br>significant.                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |                                                                                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1154 psi,                                               | 10                                                       | CO5 |     |
|      | <b>OR</b><br>Using Fetkovich's equation plot the IPR curve for a well in which Pi is 2500 psia<br>and $J'_i$ is $5 \times 10^{-4}$ stb/day-psi <sup>2</sup> . Predict the IPRs of the well at well shut in static<br>pressures of 2000 and 1500 psia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |                                                                                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                          |     | CO1 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | SECT                                                                                             | ION-C                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |                                                          |     |     |
| Q 10 | Predict the operating point to use an artificial lift in the gas well with the help of<br>Nodal analysis graph. Data are given below:<br>Gas specific gravity ( $\gamma_g$ ) = 0.71, tubing inside diameter (D) = 2.259 in., tubing<br>relative roughness (e/D) = 0.0006, Measured depth at tubing shoe (L) = 10000 ft.,<br>Inclination angle ( $\theta$ ) = 0 degrees, Wellhead pressure ( $p_{hf}$ ) = 800 psia, Wellhead<br>temperature ( $T_{hf}$ ) = 150 °F, Bottom-hole Temperature ( $T_{wf}$ ) = 200 °F, Reservoir<br>Pressure = 2000 psia, C-constant in back pressure IPR model = 0.01 Mscf/d-psi <sup>2n</sup> , n-<br>exponent in back pressure IPR model = 0.8, Avg. temperature ( $T_{av}$ ) = 635 °R,<br>compressibility factor ( $Z_{av}$ ) = 0.8626, skin factor (s) = 0.4861, moody friction factor<br>( $f_m$ ) = 0.0174, absolute open flow (AOF) = 1912.705 Mscf/d. |                                                                                           |                                                                                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                      | CO1                                                      |     |     |

| Q 11 | -              | 5 51                                  | ,              | lckinley's ty          | pe curve       | and Gringa             | irten et a     | l. type curve          |    |     |
|------|----------------|---------------------------------------|----------------|------------------------|----------------|------------------------|----------------|------------------------|----|-----|
|      | Also write     | the uses of                           | these type     |                        |                |                        |                |                        |    |     |
|      |                |                                       |                | Ol                     | R              |                        |                |                        |    |     |
|      |                | 1                                     | ure draw       | down test              | was run        | in a well              | with the       | ne following           | g  |     |
|      | characteris    |                                       |                |                        |                |                        |                |                        |    |     |
|      | 1              | · · · · · · · · · · · · · · · · · · · |                | = 0.039; μ =           | 1 /            |                        | 1 /            | · · · · · ·            |    |     |
|      |                |                                       |                | $_{\rm wb} = 0.0218$   |                |                        |                |                        |    |     |
|      | the followi    | ing table, est                        | timate for     | rmation perr           | neability      | , skin factor          | , Liquid/      | gas interfac           | e  |     |
|      | and wellbo     | ore storage d                         | uration.       |                        |                |                        |                |                        |    |     |
|      | <i>t</i> , hrs | P <sub>wf</sub> , psia                | <i>t</i> , hrs | P <sub>wf</sub> , psia | <i>t</i> , hrs | P <sub>wf</sub> , psia | <i>t</i> , hrs | P <sub>wf</sub> , psia |    |     |
|      | 0              | 3000                                  | 0.164          | 2693                   | 3.28           | 1712                   | 38.2           | 1533                   | 20 | CO5 |
|      | 0.0109         | 2976                                  | 0.218          | 2611                   | 3.82           | 1696                   | 43.7           | 1525                   |    |     |
|      | 0.0164         | 2964                                  | 0.273          | 2536                   | 4.37           | 1684                   | 49.1           | 1517                   |    |     |
|      | 0.0218         | 2953                                  | 0.328          | 2469                   | 4.91           | 1674                   | 54.6           | 1511                   |    |     |
|      | 0.0273         | 2942                                  | 0.437          | 2352                   | 5.46           | 1665                   | 65.5           | 1500                   |    |     |
|      | 0.0328         | 2930                                  | 0.491          | 2302                   | 6.55           | 1651                   | 87.4           | 1482                   |    |     |
|      | 0.0382         | 2919                                  | 0.546          | 2256                   | 8.74           | 1630                   | 109.2          | 1468                   |    |     |
|      | 0.0437         | 2908                                  | 1.09           | 1952                   | 10.9           | 1587                   | 163.8          | 1440                   |    |     |
|      | 0.0491         | 2897                                  | 1.64           | 1828                   | 16.4           | 1568                   | 218.4          | 1416                   |    |     |
|      | 0.0546         | 2886                                  | 2.18           | 1768                   | 27.3           | 1554                   | 273.0          | 1393                   |    |     |
|      | 0.109          | 2785                                  | 2.73           | 1734                   | 32.8           | 1543                   | 327.6          | 1370                   |    |     |

Name:

**Enrolment No:** 

# UNIVERSITY WITH A PURPOSE

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

**Course: Production Engineering and Well Testing & Analysis Program: M.Tech (Petroleum Engineering)** 

**Course Code: PEAU 7006** 

Semester: II<sup>nd</sup> Time 03 hrs. Max. Marks: 100

**Instructions:** All the questions are compulsory.

#### **SECTION A**

| S. No. | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | СО         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| Q 1    | Explain the procedure of Drill Stem Test. Prepare and examine a schematic chart of pressure vs. time from a test with two flow periods and two shut in periods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4     | CO4        |
| Q 2    | In a well test analysis by Ramey's Type curve, a "match point" is obtained from the actual graph of log ( $\Delta P$ ) vs log t and Ramey's type curve of log P <sub>D</sub> vs log t <sub>D</sub> . Corresponding to the "match point" following data are obtained: ( $\Delta P$ ) <sub>MP</sub> = 100 psig, (P <sub>D</sub> ) <sub>MP</sub> = 0.85, (t) <sub>MP</sub> = 1 and (t <sub>D</sub> ) <sub>MP</sub> = 1.93 × 10 <sup>4</sup> .<br>Other reservoir properties are: OFVF (B <sub>o</sub> ) = 1.2 bbl/STB, viscosity ( $\mu_o$ ) = 0.8 cp, total compressibility (c <sub>t</sub> ) = 10 × 10 <sup>-6</sup> psi <sup>-1</sup> , thickness (h) = 56 ft, initial reservoir pressure (p <sub>i</sub> ) = 3000 psi, flow rate (q) = 500 STB/day and wellbore radius (r <sub>w</sub> ) = 0.3 ft Calculate the permeability and porosity of the reservoir $\left[P_D = \frac{0.00708  kh (P_i - P_{wf})}{q \mu B_0} \wedge t_D = \frac{0.002637  kt}{\varnothing \mu C_t r_w^2}\right]$ | 4     | CO3        |
| Q 3    | What are the well stimulation jobs applicable to enhanced oil production and why do we need to perform well stimulation jobs?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4     | <b>CO2</b> |
| Q 4    | Classify the separators used in oil industry. What are parameters affects the separation process during oil and gas separation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4     | CO2        |
| Q 5    | A 12 inch diameter hole has a stimulated region 48 inch deep. The permeability in this region is one tenth that of the undamaged region. Estimate skin effect and effective wellbore radii.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4     | CO3        |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |
| Q 6    | A new oil well with an infinite acting boundary produced 800 STB/D for 3 days, it then was shut in for a pressure buildup test, during which the following data were recorded. If the wellbore radius, $r_w$ is 0.3 ft; net sand thickness, $h$ is 22 ft; formation volume factor, $B_o$ is 1.3 RB/STB; porosity, $\phi$ is 0.2; total compressibility, $C_t$ is 20 × 10 <sup>-6</sup> psi <sup>-1</sup> ; and oil viscosity, $\mu_o$ is 1.0 cp. estimate Formation Permeability and Skin Factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10    | CO4        |
|        | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |

| Q 7  | Predict future IPR curves for given problem.<br>Given data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|
|      | 45 - acre spacing. Residual oil saturation = $16%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |            |
|      | J = 0.90. Interstitial water saturation = 21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | CO1        |
|      | q = 500 bpd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |            |
|      | $\dot{P}_r = 2500 \text{ psig}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |
|      | Parameters Present Future                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |            |
| Q 8  | Differentiate, between carryover and 25100 why got the storage 100 psi gand gas. Describe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | CO2        |
| Q 9  | the working procedure of horizontal <b>1200</b> epsigater with suitable diagram.<br>A constant rate drawdowr test was rug in a cycle with following characteristics: wellbore radius (r <sub>w</sub> ) = 0.198 gH, total compressibility (c <sub>0</sub> = 17×10 <sup>6</sup> psi <sup>-2</sup> 50 <sup>OII</sup> compressibility ( $c_0 = 17 \times 10^6$ psi <sup>-2</sup> 50 <sup>OII</sup> compressibility ( $c_0 = 17 \times 10^6$ psi <sup>-2</sup> 50 <sup>OII</sup> compressibility ( $c_0 = 12 \times 10^6$ psi <sup>-2</sup> , production rate (q <sub>0</sub> ) = 250 STB/D, thickness (h) = 69 ft, viscosity (\mu <sub>0</sub> ) = 0.8 cp, protectly (0) = 0.039, OFVF (H <sub>0</sub> ) = 1.136 bbl/STB, initial reservoir pressure P <sub>i</sub> = 4412 psia. The Annulus cross-sectional area is 0.0218 sq ft, the density of the fluid in the wellbore is 53 lbm/cu ft and volume of the fluid in wellbore is 200 bbl. The wellbore has falling liquid/gas interface.<br>Following data are obtained from semi-logarithmic plot of flowing BHP (P <sub>wf</sub> ) vs time (t): Slope of middle time region (MTR) = 70 psi/cycle and pressure at one hour (P <sub>1b</sub> ) = 3652 psia.<br>Calculate: (i) Formation permeability (ii) Skin factor (iii) Pressure drop due to skin (iv) Time to end wellbore storage effect<br>$\left  t_{wbs} = \frac{(200000 + 12000 s) C_s}{k_{\mu}} \right _{where C_s}$ is wellbore storage constant human due to skin (iv) Time to and wellbor storage effect<br>$\left  t_{wbs} = \frac{(200000 + 12000 s) C_s}{k_{\mu}} \right _{where C_s}$ is wellbore storage constant human due to skin (iv) Time to end wellbore torage effect<br>$\left  t_{wbs} = \frac{(200000 + 12000 s) C_s}{k_{\mu}} \right _{where C_s}$ is wellbore storage constant human due to skin (iv) Time to end wellbore storage effect<br>$\left  t_{wbs} = \frac{(200000 + 12000 s) C_s}{k_{\mu}} \right _{where C_s}$ is placed at 160 acres well spacing. The vertical wells using Joshi Method. The well is placed at 160 acres well spacing. The vertical well is perforated in the bottom 8 ft. to minimize gas coning. The following data are given:<br>$K_h = k_v = 70$ md, $h = 80$ ft., $2X_e = 2640$ ft., $B_o = 1.1$ RB/STB, $\mu_o = 0.42$ cp, $r_w = 0.328$ ft., $\rho_o - \rho_g = 0.48$ gm/cc, $h_p = 8$ ft. for vertical wells. | 10 | CO5<br>CO1 |
|      | SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |
| Q 10 | Explain Ramey's type curve, Mckinley's type curve and Gringarten et al. type curve.<br>Also write the uses of these type curves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | CO5        |
| Q 11 | Derive an expression for determining future IPR with the help of Fetkovich's method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 | CO1        |
|      | with proper assumptions. Using Fetkovich's method, plot the IPR curve for a well in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |            |
|      | which $P_i$ is 3000 psia and $J_o^i = 4 \times 10^{-4}$ stb/day-psia <sup>2</sup> . Predict the IPRs of the well at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |            |
|      | well shut in static pressures of 2500 psia, 2000 psia, 1500 psia and 1000 psia.<br>OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |            |
|      | Predict the operating point to use an artificial lift in the gas well with the help of Nodal analysis graph. Data are given below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |            |
|      | Gas specific gravity ( $\gamma_g$ ) = 0.71, tubing inside diameter (D) = 2.259 in., tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |            |
|      | relative roughness $(e/D) = 0.0006$ , Measured depth at tubing shoe $(L) = 10000$ ft.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |            |
|      | Inclination angle ( $\theta$ ) = 0 degrees, Wellhead pressure ( $p_{hf}$ ) = 800 psia, Wellhead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |

| Г |                                                                                                   |  |
|---|---------------------------------------------------------------------------------------------------|--|
|   | temperature $(T_{hf}) = 150$ °F, Bottom-hole Temperature $(T_{wf}) = 200$ °F, Reservoir           |  |
|   | Pressure = 2000 psia, C-constant in back pressure IPR model = $0.01 \text{ Mscf/d-psi}^{2n}$ , n- |  |
|   | exponent in back pressure IPR model = 0.8, Avg. temperature $(T_{av}) = 635$ °R, avg.             |  |
|   | compressibility factor ( $Z_{av}$ ) = 0.8626, skin factor (s) = 0.4861, moody friction factor     |  |
|   | $(f_m) = 0.0174$ , absolute open flow (AOF) = 1912.705 Mscf/d.                                    |  |