Name:			
Enrolm	nent No:	UPLJ	
	UNIVERSITY OF PETROLEUM AND EN		
Course	End Semester Examination, May e: PHYSICS I	Semester: II	
Course Code: PHYS1007 Programme: BTech : GIE GSE and FSE Max. Marks		May Mayles 100	
Time:		Max. Marks: 100	
	ctions: All questions are compulsory (Q9, Q10 and Q12 have interpreted	ernal choice)	
i otai p	pages: 2		
	SECTION A		
S. No.		Marks	СО
Q1.	What do you understand by magnetic flux and explain why ne bar magnet is zero.	et magnetic flux from a 4	CO2
Q2.	A grating surface has 90000 ruled lines. What is the resolving the first order	power of the grating in 4	CO1
Q3.	Write the properties of a well-behaved wave function.	4	CO3
Q4.	Briefly discuss various types of interference with examples.	4	CO1
Q5.	Calculate the energy and momentum of a photon of wavelength	h 1 Å. 4	CO3
	SECTION B		
Q6. Discuss the origin of diamagnetism, paramagnetism and ferromagnetism in materials. How temperature affects magnetism in these materials? Explain with suitable diagrams of susceptibility versus temperature.			CO2
Q7.	Discuss the characteristics of blackbody spectrum with d displacement law calculate the blackbody temperature for peaking at 550 nm. Wien's displacement constant = 0.29 cm-K	the emitted spectrum	СО3
Q8.	A light ray enters from air to step indexed multimode fiber. The core is 1.5 and fractional index difference (Δ) is 0.015. Determine of cladding, critical angle for propagation, numerical application acceptance angle.	ine the refractive index	C01
Q9.	Explain, how circularly polarized light may be distinguish polarized and plane polarized light. OR	ed from a mixture of 8	C01
	Explain the construction and working of Ruby laser with suitable		

Q10.	The speed of an electron moving at 600 m/sec is measured to an accuracy of 0.005%. What will be the minimum error in determining its position?		
	OR	8	CO3
	Calculate the de-Broglie wavelength of an alpha particle accelerated through a potential difference of 1000 volts.		
	SECTION-C		
Q11.	(a) Derive Clausis-Mosotti equation using internal (Lorentz) field at an atom in cubic structure $\left(E_L = E + \frac{P}{3\epsilon_0}\right)$. Where P is the polarization vector due to externally electric field E on dielectric material.	10	CO2
	(b) Calculate the polarizability and relative permittivity in hydrogen gas with a density of 9.8×10 ²⁶ atoms/m ³ . The radius of the hydrogen atom to be 0.50Å.	10	
Q12.	(a) Derive the expression for normalized wave function in the following form for a particle trapped in 1D potential box of length L.	10	CO3
	$\psi_n(x) = \sqrt{2/L} \sin(n\pi x/L)$ for, $0 < x < L$		
	(b) Give the construction of Nicol prism and explain its working as polarizer and analyzer.	10	CO2
	OR		
	(a) A beam of x-rays with wavelength λ is directed toward a sample. The x-ray scattered at an angle ϕ from the rest electron within the sample, and detected with a new wavelength λ' . If rest mass of the electron is m_0 , find the following expression for the change in wavelength.	10	CO3
	$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \phi)$ (b) What is a plane diffraction grating? Derive the condition for absent spectra in plane diffraction grating. Also, deduce an expression for its dispersive power.	10	CO2
	Physical constants: $h = 6.63 \times 10^{-34} J - s$, $c = 3 \times 10^8 m/s$, $k_B = 1.38 \times 10^{-23} J/K$, $\mu_0 = 4\pi \times \epsilon_0 = 8.854 \times 10^{-12} F/m$	10 ⁻⁷ H/n	 !

CONFIDENTIAL

Н

Name of Examination (Please tick, symbol is given)	:	MID			END	н	SUPPLE	
Name of the School (Please tick, symbol is given)	:	SOE	н		SOCS		SOP	
Programme	:	BTech:	GSE, C	GIE, FSE				
Semester	:	I						
Name of the Course	:	PHYSICS	S- I					
Course Code	:	PHYS10	07					
Name of Question Paper : Dr S. K. Jos				oshi				
Employee Code : 4000072			23					
Mobile & Extension	:	941203	4458					
Note: Please mention addit Table/Graph Sheet etc. else	mer	ntion "N("NC	ot af Dt ap	PPLICAE PLICAB	BLE": LE"	ring exam	nination such as	
		OR SR		EPAR	TMENT			
Date of Examination			:					
Time of Examination		:						
No. of Copies (for Print)			:					

Note: - Pl. start your question paper from next page

Name:	
Enrolment No:	UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: PHYSICS I Course Code: PHYS1007 Programme: BTech : GIE GSE and FSE Time: 03 hrs.

Instructions: All questions are compulsory (Q9, Q10 and Q12 have internal choice) Total pages: 2

SECTION A S. No. Marks CO Explain the hysteresis curve in magnetism. Based on hypothesis curve, how will you Q1. 4 CO2 distinguish between hard and soft magnetic materials. Two coherent sources whose intensity ratio is 144:1 produce interference fringes. Q2. 4 **CO1** Deduce the ratio of maximum to minimum intensity of the fringe system

	Deduce the ratio of maximum to minimum intensity of the minge system.		
Q3.	Write the statements and expressions of Heisenberg's uncertainty principle.	4	CO3
Q4.	Briefly discuss various types of interference with examples.	4	CO1
Q5.	Show that the expectation value of momentum for a particle in a one-dimensional box is zero.	4	CO3

	SECTION B		
Q6.	List the main properties of diamagnetic, paramagnetic and ferromagnetic materials. What is Curie-Weiss law ?	8	CO2
Q7.	Give the experimental findings of Photoelectric effect experiment. Find maximum wavelength of light that can liberate electrons from a metallic surface of work function 2.24 eV.		
Q8.	A 15 km long cable uses an optical fiber with a loss of 1.5 dB/km. The fiber is joined every kilometer with connectors, which give attenuation of 0.8 dB each. Determine the minimum optical power which optical power which must be launched with this cable to maintain a power level of 0.3μ W at the receiving end.	8	CO1
Q9.	Discuss the properties of double refracting materials. Discuss their use in Quarter wave plate (QWP) and half wave plate (HWP). Deduce the expressions of thickness for HWP and QWP.	8	C01
	Explain construction and working of Ruby laser with suitable diagrams.	Ū	
Q10.	Calculate the maximum percentage change in wavelength due to Compton scattering for incident photons of wavelength 1Å and 10Å. What information do you draw from the result?	8	CO3
	OR		

Max. Marks: 100

Semester: II

	SECTION-C		
Q11.	(a) Derive Clausis-Mosotti equation using internal (Lorentz) field at an atom in cubic structure $\left(E_L = E + \frac{P}{3\epsilon_0}\right)$. Where P is the polarization vector due to externally electric field E on dielectric material.	10	CO2
	(b) An electron in a hydrogen atom moves in a circular orbit of radius 0.5 Angstroms. The electron performs 10 ¹⁶ revolutions per second. Determine the magnetic moment associated with the orbital motion of the electron.	10	
Q12.	 (a) Determine the expression for the eigenvalue (E_n) and eigenfunction (φ_n) for a particle trapped in 1-Dimensional box. 	10	CO3
	(b) Give a systematic procedure for production and analysis of Plane Polarized light (PPL), Circular polarized light (CPL) and Elliptical polarized light (EPL).	10	CO2
	OR		
	(a) A beam of x-rays with wavelength λ is directed toward a sample. The x-ray is scattered at an angle ϕ from the rest electron within the sample, and detected with a new wavelength λ' . If rest mass of the electron is m_0 , find the following expression for the change in wavelength. $\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 c} (1 - \cos \phi)$	10	CO3
	(b) From the expression of resultant intensity $(I = I_0 \frac{\sin^2 \alpha}{\alpha^2})$ for a single slit diffraction show that the intensity ratios of central maxima and secondary maxima varies approximately as 1: $4/9\pi^2$: $4/25\pi^2$: $4/49\pi^2$.	10	CO2