Name: Enrolment No:			
Course: PHYSICS I Semester: II Course Code: PHYS1007 Programme: BTech : GIE GSE and FSE Max. Marks: 100 Time: 03 hrs. Instructions: All questions are compulsory (Q9, Q10 and Q12 have internal choice) Total pages: 2			
SECTION A			
S. No.		Marks	CO
Q1.	What do you understand by magnetic flux and explain why net magnetic flux from a bar magnet is zero.	4	CO2
Q2.	A grating surface has 90000 ruled lines. What is the resolving power of the grating in the first order	4	CO1
Q3.	Write the properties of a well-behaved wave function.	4	CO3
Q4.	Briefly discuss various types of interference with examples.	4	CO1
Q5.	Calculate the energy and momentum of a photon of wavelength $1 \AA$.	4	CO3
SECTION B			
Q6.	Discuss the origin of diamagnetism, paramagnetism and ferromagnetism in materials. How temperature affects magnetism in these materials? Explain with suitable diagrams of susceptibility versus temperature.	8	CO2
Q7.	Discuss the characteristics of blackbody spectrum with diagram. From Wien's displacement law calculate the blackbody temperature for the emitted spectrum peaking at 550 nm . Wien's displacement constant $=0.29 \mathrm{~cm}-\mathrm{K}$.	8	CO3
Q8.	A light ray enters from air to step indexed multimode fiber. The refractive index of core is 1.5 and fractional index difference (Δ) is 0.015 . Determine the refractive index of cladding, critical angle for propagation, numerical aperture and maximum acceptance angle.	8	CO1
Q9.	Explain, how circularly polarized light may be distinguished from a mixture of polarized and plane polarized light. OR Explain the construction and working of Ruby laser with suitable diagrams.	8	CO1

Q10.	The speed of an electron moving at $600 \mathrm{~m} / \mathrm{sec}$ is measured to an accuracy of 0.005%. What will be the minimum error in determining its position? OR Calculate the de-Broglie wavelength of an alpha particle accelerated through a potential difference of 1000 volts.	8	CO3
SECTION-C			
Q11.	(a) Derive Clausis-Mosotti equation using internal (Lorentz) field at an atom in cubic structure $\left(E_{L}=E+\frac{P}{3 \epsilon_{0}}\right)$. Where P is the polarization vector due to externally electric field E on dielectric material. (b) Calculate the polarizability and relative permittivity in hydrogen gas with a density of 9.8×10^{26} atoms $/ \mathrm{m}^{3}$. The radius of the hydrogen atom to be $0.50 \AA$.	10 10	CO2
Q12.	(a) Derive the expression for normalized wave function in the following form for a particle trapped in 1D potential box of length L. $\psi_{n}(x)=\sqrt{2 / L} \sin (n \pi x / L) \text { for }, 0<x<L$ (b) Give the construction of Nicol prism and explain its working as polarizer and analyzer. OR (a) A beam of x-rays with wavelength λ is directed toward a sample. The x-ray scattered at an angle ϕ from the rest electron within the sample, and detected with a new wavelength λ^{\prime}. If rest mass of the electron is m_{0}, find the following expression for the change in wavelength. $\Delta \lambda=\lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \phi)$ (b) What is a plane diffraction grating? Derive the condition for absent spectra in plane diffraction grating. Also, deduce an expression for its dispersive power.	10	CO3 $\mathrm{CO} 2$ CO $\mathrm{CO} 2$
Physical constants: $h=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$ $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$			

CONFIDENTIAL

-

Name of Examination (Please tick, symbol is given)	:	MID		END	ㅂ	SUPPLE	
Name of the School (Please tick, symbol is given)	:	SOE	ㅂ	SOCS		SOP	
Programme	:	BTech: GSE, GIE, FSE					
Semester	:	1					
Name of the Course	:	PHYSICS-I					
Course Code	:	PHYS1007					
Name of Question Paper Setter	:	Dr S. K. Joshi					
Employee Code	:	40000723					
Mobile \& Extension	:	9412034458					
Note: Please mention additional Stationery to be provided, during examination such as Table/Graph Sheet etc. else mention "NOT APPLICABLE": "NOT APPLICABLE"							
FOR SRE DEPARTMENT							
Date of Examination			:				
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page

Name:
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: PHYSICS I
Semester: II
Course Code: PHYS1007
Programme: BTech : GIE GSE and FSE Max. Marks: 100
Time: 03 hrs.
Instructions: All questions are compulsory (Q9, Q10 and Q12 have internal choice) Total pages: 2

SECTION A			
S. No.		Marks	CO
Q1.	Explain the hysteresis curve in magnetism. Based on hypothesis curve, how will you distinguish between hard and soft magnetic materials.	4	CO2
Q2.	Two coherent sources whose intensity ratio is $144: 1$ produce interference fringes. Deduce the ratio of maximum to minimum intensity of the fringe system.	4	CO1
Q3.	Write the statements and expressions of Heisenberg's uncertainty principle.	4	CO3
Q4.	Briefly discuss various types of interference with examples.	4	CO1
Q5.	Show that the expectation value of momentum for a particle in a one-dimensional box is zero.	4	CO3
SECTION B			
Q6.	List the main properties of diamagnetic, paramagnetic and ferromagnetic materials. What is Curie-Weiss law?	8	CO2
Q7.	Give the experimental findings of Photoelectric effect experiment. Find maximum wavelength of light that can liberate electrons from a metallic surface of work function 2.24 eV .	8	CO3
Q8.	A 15 km long cable uses an optical fiber with a loss of $1.5 \mathrm{~dB} / \mathrm{km}$. The fiber is joined every kilometer with connectors, which give attenuation of 0.8 dB each. Determine the minimum optical power which optical power which must be launched with this cable to maintain a power level of $0.3 \mu \mathrm{~W}$ at the receiving end.	8	CO1
Q9.	Discuss the properties of double refracting materials. Discuss their use in Quarter wave plate (QWP) and half wave plate (HWP). Deduce the expressions of thickness for HWP and QWP. OR Explain construction and working of Ruby laser with suitable diagrams.	8	CO1
Q10.	Calculate the maximum percentage change in wavelength due to Compton scattering for incident photons of wavelength $1 \AA$ and $10 \AA$. What information do you draw from the result? OR	8	CO3

	Can a photon and an electron of the same momentum have the same wavelength? Compare their wavelengths if the two have the same energy.		
SECTION-C			
Q11.	(a) Derive Clausis-Mosotti equation using internal (Lorentz) field at an atom in cubic structure $\left(E_{L}=E+\frac{P}{3 \epsilon_{0}}\right)$. Where P is the polarization vector due to externally electric field E on dielectric material. (b) An electron in a hydrogen atom moves in a circular orbit of radius 0.5 Angstroms. The electron performs 10^{16} revolutions per second. Determine the magnetic moment associated with the orbital motion of the electron.	10 10	CO2
Q12.	(a) Determine the expression for the eigenvalue $\left(\mathrm{E}_{\mathrm{n}}\right)$ and eigenfunction $\left(\varphi_{\mathrm{n}}\right)$ for a particle trapped in 1-Dimensional box. (b) Give a systematic procedure for production and analysis of Plane Polarized light (PPL), Circular polarized light (CPL) and Elliptical polarized light (EPL). OR (a) A beam of x-rays with wavelength λ is directed toward a sample. The x-ray is scattered at an angle ϕ from the rest electron within the sample, and detected with a new wavelength λ^{\prime}. If rest mass of the electron is m_{0}, find the following expression for the change in wavelength. $\Delta \lambda=\lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \phi)$ (b) From the expression of resultant intensity $\left(I=I_{0} \frac{\sin ^{2} \alpha}{\alpha^{2}}\right)$ for a single slit diffraction show that the intensity ratios of central maxima and secondary maxima varies approximately as $1: 4 / 9 \pi^{2}: 4 / 25 \pi^{2}: 4 / 49 \pi^{2}$.	10	CO3 CO2 CO3 CO2

Physical constants: $h=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

$$
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

