Name:				
Enrolment No:		UPES		
	UNIVERSITY OF PETRO	LEUM AND ENERGY STUDIE	S	
	END Semester	Examination, May 2019		
Progr	amme Name: B.Tech., APE UP		VI	
Cours	e Name : Well Log Analysis and Well Test	ing Time :	03 hrs	
	e Code : PTEG 323	Max. Marks :	100	
	f page(s) : 2			
	ctions: Answer All Questions			<u> </u>
SNo	SECT		Marks	CO
Q 1	Illustrate the typical relative resistivity conditi saturated, permeable sandstone formation inva		5	CO1
Q 2	Enumerate the uses of Neutron Density Log.		5	CO2
	A well with 0.198 ft radius produced 250 STB			
Q 3	and indicated a skin factor, S of 6.37 in a pres	sure build-up test. Estimate the effective well	5	CO3
	bore radius, r _{wa}			
0.4	A flow test run on an exploratory well for a	-	604	
Q 4	data: $k = 100$ md; $\Phi = 0.2$; $C_t = 2x10-5$ ps	5	CO4	
	investigation.	ECTION B		
		al log operation in clean sand stones: $R_m = 1.6$		
	$Ω$ -m; $R_w = 0.16$ Ω-m; $R_{mc} = 1.57$ Ω-m; $R_{mf} = 1$	10		
Q 5	Calculate the porosity and water saturation of		CO1	
	the flushed zone is 30%.			
Q 6	Demonstrate with neat diagram the working pa	rinciple of Formation Density log tool.	10	CO2
	A well located in a reservoir of 3000 ft is pro	10		
~ -	The following is the data describing well abd f		~ ~ ~	
Q 7	= 0.1 md; $Ct = 1.5*10-5/\text{psi}$; $rw = 0.5$ ft; $h =$		CO3	
	the reservoir pressure at a radius of 1 ft after 3	_		
	A	ta available from a gas well pressure buildup		
	test. $T = 199^{\circ}F = 659^{\circ}R$; $h = 34$ ft; $\mu = 0.0$			
	0.000315 psi ⁻¹ ; $\Phi = 0.22$; $Z = 0.87$; and $r_w = 0$	10		
	the test. A plot of BHP P_{ws} vs. log $(t_p + \Delta t) / \Delta t$			
Q 8	cycle. Analysis of the buildup curve showed		CO4	
	psia. Pressure on the middle-time line at Δt			
	pressure at shut-in, p_{wf} , was 2,486 psia.			
	0			
	Explain in detail about the Iso-Chronal test for			
		ECTION-C		
Q 9	Derive for the diffusivity equation describ		20	CO3
	compressible fluid with a constant compressib	ility, C_t and viscosity, μ through an iso-tropic		

	radial porous medium with constant pore volume.									
	OR									
	A new oil well with an infinite acting boundary produced 500 STB/D for 3 days, it									
	then was shut in for a pressure buildup test, during which the following data were									
I	recorded.									
	Time after shut-in, Δt (hrs) 0 2 4 8 16 24 48									
1	P _{ws} (psig) 1,150 1,794 1,823 1,850 1,876 1,890 1,910									
	If the wellbore radius, r_w is 0.3 ft; net sand thickness, h is 22 ft; formation volume factor,									
	is 1.3 RB/STB; porosity, ϕ is 0.2; total compressibility, C_t is 20×10^{-6} ; and oil									
	viscosity, μ_o is 1.0 cp, then, estimate the formation permeability, k: the skin factor, S: and									
	the initial reservoir pressure, <i>Pi</i> .									
	A Flow-After-Flow test in a gas well reported the following data.									
	P_{wf} (psig) 403 394 379 363									
	q_g (MMscf/D 4.288 9.265 14.552 20.177									
Q10	At each rate, pseudo-steady state was reached. Initial shut-in bottom hole pressure was	20	CO4							
1	determined to be 408 psi. Estimate the Absolute Flow Potential (AOF) of the tested well									
	using (a) the empirical plot method and									
	(b) the theoretical flow equation method									

Name:													
Enrolr	nent No:												
	U	NIV	ERSITY OF	PETF	ROLE	UM .	AND	ENE	RGY	STUD	IES	S	
			END S	emest	er Exa	mina	tion, N	1ay 20	19				
0			Fech., APE UP							emester		VI	
	e Name		l Log Analysis and	l Well T	esting					'ime Asy Mar		03 hrs	
	e Code of page(s)	:PIE	G 323						N	Iax. Mai	rks :	100	
		• swer A	Il Questions										
SNo				SEC	CTION	A						Marks	CO
Q 1	Illustrate t	he typ	ical relative resist	civity co	ondition	s expe	cted in	wire lin	ne logg	ing throu	ıgh	5	CO1
			permeable sandston		ation in	vaded l	by fresh	mud fil	trate.			5	
Q 2	Enumerate the uses of Gamma Ray Log. From the following production data calculate pseudo-producing time, t_p by Horner												CO2
	approxima		ang production c	iala Cal	culate	pseudo	-produc	ing tin	le, l_p (by more	51 5		
Q 3	upproximu		Production Tim	s) 2	5 12	2 26	72				5	CO3	
			Total Production	<u>`</u>									
	A flow to	st run	on an exploratory	well fo	_	-	_		rasts th	a follow	ina		
Q 4			and; $\Phi = 0.2$; $C_t =$		-			-	-		-	5	CO4
×.	investigati		ia, 1 0.2, c _i	21110 0	P51 ,	una pr	0.0 0	p. Loui	inate th		01	C	001
	C					ION B							
	-		is data gathered for										
Q 5	Ω -m; $R_w = 0.16$ Ω-m; $R_{mc} = 1.57$ Ω-m; $R_{mf} = 1.33$ Ω-m; $R_{induction} = 23$ Ω-m; $R_{xo} = 25.08$ Ω-m.											10	CO1
	Calculate the porosity and water saturation of the formation if the residual oil saturation in the flushed zone is 30%.												
Q 6			n neat diagram the	working	g princi	ple of I	Drill Ste	m Testi	ng (DS	Т).		10	CO2
-			with an infinite a							-	s, it		
	then was	shut i	n for a pressure	buildup	o test,	during	which	the fol	llowing	, data w	ere		
	recorded.												
	Time	after	shut-in, Δt (hrs)	0	2	4	8	16	24	48			
Q 7		Pw	s (psig)	1,150	1,794	1,823	1,850	1,876	1,890	1,910		10	CO3
	If the wellbore radius, r_w is 0.3 ft; net sand thickness, h is 22 ft; formation volume factor										tor.		
			B; porosity, ϕ is										
						-			JX10 7]	psi; and	011		
Q 8	 viscosity, μ_o is 1.0 cp, then, estimate the initial reservoir pressure, <i>Pi</i>. Explain in detail about the Iso-Chronal test for gas wells. 											10	CO4
χv	OR											10	001
	Estimate skin factor from the following data available from a gas well pressure buildup test.										est.		
	$T = 199^{\circ}\text{F} = 659^{\circ}\text{R}; h = 34 \text{ ft}; \mu = 0.023 \text{ cp}; S_W = 0.33 \text{ (water is immobile)}; C_t = 0.000315$												
	psi ⁻¹ ; $\Phi = 0.22$; $Z = 0.87$; and $r_w = 0.3$ ft. The well produced 6,068 Mcf/D before the test. A												
	plot of BHP P_{ws} vs. log $(t_p + \Delta t) / \Delta t$ gave a middle-time line with a slope of 66 psi/cycle.												

	Analysis	of the h	uildun ar	irve show	ved that	static dr	ainage_ar	ea nrecou	re was 3	171 psia.		
										pressure at		
	shut-in, p				1 110	, <i>, , , ,</i> , , , , , , , , , , , , , ,		polu ullu	no ,, m8 p	i essui e ut		
		<u>,</u> ,	1		S	ECTIO	N-C			I		1
	Derive for the diffusivity equation describing the flow of slightly compressible fluid with a											
	constant compressibility C_t and viscosity μ through an iso-tropic three-dimensional											
	cartesian porous medium with constant pore volume.											
	OR											
	The following data were recorded during constant-rate pressure drawdown test of a well											
	located within infinite acting boundaries. The wellbore had a falling liquid/gas interface											
	throughout the drawdown test.									DC		
	t (hrs)	Pwf	t (hrs)	Pwf	t (hrs)	Pwf	t (hrs)	Pwf (nsia)	t (hrs)	Pwf (nsia)		
		(psia)		(psia)		(psia)		(psia)		(psia)		
	0	4412	5.78	3607	20.7	3561	61.8	3526	185	3490	20	
Q 9	0.12	3812	6.94	3600	24.9	3555	74.2	3521	222	3481		CO3
	1.94	3699	8.32	3593	29.8	3549	89.1	3515	266	3472		
	2.79	3653	9.99	3586	35.8	3544	107	3509	319	3460		
	4.01	3636	14.4	3573	43.0	3537	128	3503	383	3446		
	4.82	3616	17.3	3567	51.5	3532	154	3497	460	3429		
	Other pertinent data include, $q = 250$ STB/D; $B = 1.136$ bbl/STB; $\mu = 0.8$ cp; $r_w = 0.198$ ft;									= 0.198 ft;		
	$h = 69$ ft; $\Phi = 0.039$, and $C_t = 17 \times 10^{-6}$ psi ⁻¹ . The tubing area is 0.0218 sq ft and the density									- 1		
	of the liquid in the wellbore is 53 lbm/cu ft. Determine the formation permeability, k and									ity, k and		
	the skin f	,		11		1.1.0.11						
	A Flow-A	A Flow-After-Flow test in a gas well reported the following data.										
			$P_{wf}(psig)$ 4		403	394	379	363				
		qg (MMscf/D		/Iscf/D	4.288	9.265	14.552	20.177				
Q10	At each rate, pseudo-steady state was reached. Initial shut-in bottom hole pressure was									sure was	20	CO4
	determined to be 408 psi. Estimate the Absolute Flow Potential (AOF) of the tested well											
	using (a) the empirical plot method and											
	(b) the theoretical flow equation method											