| Name:
 Enrolment No: |
| :--- | :--- |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES |
| End Semester Examination, May 2019 |
| Course: |
| Program: CE-RP |
| Course Code: CHCE315 |
| Instructions: |

	where, $C_{0}=$ Discharge coefficient, $A=$ Area of the hole, $P_{0}, T_{0}=$ pressure and temperature of the gas in the tank, $M=$ molecular weight of the gas, $\gamma=$ ratio of specific heats, $R_{g}=$ Ideal gas constant $=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$ [10] [CO4]
Q 9	Derive the governing equation for concentration levels for neutrally buoyant dispersion models of both puff and plume releases. [10] [CO5]
SECTION-C	
Q 10	A tank with a drain pipe is shown in Figure 1 below. The tank contains crude oil, and there is a concern that the drain pipe might shear off below the tank, allowing the tank contents to leak out. Figure 1 If the drain pipe shears 2 m below the tank, and the oil level is 7 m at the time, estimate the initial mass flow rate of material out of the drain pipe. The crude oil has a density of $928 \mathrm{~kg} / \mathrm{m}^{3}$ and a viscosity of $0.004 \mathrm{~kg} / \mathrm{m}$. Assume that the interior of the pipe is smooth and that the following relationships hold for the Fanning friction factor. $\begin{aligned} & f=\frac{16}{\mathfrak{R}} \mathfrak{R}<2000 \\ & \frac{1}{\sqrt{f}}=-4 \log \left(\frac{1}{3.7} \frac{\epsilon}{d}+\frac{1.255}{\mathfrak{R} \sqrt{f}}\right) \mathfrak{R}>4000 \end{aligned}$ where, $\operatorname{Re}=$ Reynolds' number, $f=$ Fanning friction factor, $\varepsilon=$ Roughness factor, $d=$ Internal diameter of pipe.
Q 11	An alkylation unit was being started up after shutdown because of an electrical outage. When adequate circulation could not be maintained in the deisobutanizer heater circuit, it was decided to clean the strainer. Workers had depressurized the pipe and removed all but three of the flange bolts when a pressure release blew a black material from the flange followed by butane vapors. These vapors were carried to a furnace 100 ft away, where they ignited, flashing back to the flange. The ensuing fire exposed a fractionating tower and horizontal receiver drums. These drums exploded, rupturing pipelines, which added more fuel. The explosions and heat caused loss of insulation from the $8-\mathrm{ft} \times 122-\mathrm{ft}$ fractionator tower, causing it to weaken and fall across two major pipelines, breaking pipes which added more fuel to fire. Extinguishment, achieved basically by isolating the fuel sources, took 2.5 hours. The fault was traced to a 10 -in valve that had been prevented from closing the last 0.75 -in by a fine powder of carbon and iron oxide. When the flange was opened, this powder blew out, allowing liquid butane to be released.

through 300 m of a horizontal new commercial steel pipe $(\varepsilon=0.046 \mathrm{~mm})$ of actual inside diameter of 0.02 m . The ambient pressure is 1 atm .

If the pipe breaks off at the regulated source, estimate the flow rate through the leak, in kg / s.
If the pipe breaks off at the end of the $300-\mathrm{m}$ length pipe, estimate the flow in kg / s.
Density of chlorine is $1380 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity is $0.328 \times 10^{-3} \mathrm{~Pa}$.s. Assume an orifice discharge coefficient of 0.61 and the following equation for the Fanning friction factor.
$f=\frac{16}{\mathfrak{R}} \mathfrak{R}<2000$
$\frac{1}{\sqrt{f}}=-4 \log \left(\frac{1}{3.7} \frac{\epsilon}{d}+\frac{1.255}{\mathfrak{R} \sqrt{f}}\right) \mathfrak{R}>4000$
where,
$R e=$ Reynolds' number
$f=$ Fanning friction factor,
$\varepsilon=$ Roughness factor,
$d=$ Internal diameter of pipe.
[20] [CO4]

