Name: Enrolme				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
	End Semester Examination, May 2019			
0	rogramme Name: B. Tech PSE and B. Tech ElectricalSemesterourse Name: Renewable Energy Technology & CogenerationTime		[
			: 03 hrs	
Course (Nos. of j		rks : 100		
	ons: Attempt all questions. Internal choice is given in Q9 and Q11			
	SECTION A			
S. No.	Question Body	Marks	CO	
Q1	List down the advantages and disadvantages of concentrating collectors over flat plate	4	CO1	
	collectors.	4		
Q2	Discuss I/V characteristics of solar PV System and list the parameters on which the		0.00	
	performance of the solar PV system is dependent.	4	CO2	
Q3	Explain and differentiate between Isovents and Isodynes for wind energy assessment.	4	CO3	
Q4	Calculate (i) the volume of a biogas digester suitable for the output of four cows, and	-		
	(ii) the power available from the digester. Retention time is 20 days, temperature 30°C,			
	dry matter consumed 2 kg/day, biogas yield 0.24m ³ per kg. Burner efficiency is 60%,	4	CO1	
	methane proportion is 0.8, Hm the heat of combustion of methane may be assumed to			
	be 28 MJ/m ³ at STP.			
Q5	Briefly explain the geothermal field with the help of neat sketch.	4	CO4	
	SECTION B			
Q6	Explain the principle of Tidal Power in detail and draw the neat sketch of Tidal Power	10		
	Plant highlighting its main components.	10	CO1	
Q7	With the help of neat layout explain in detail the operation of typical Biomass	10	0.00	
	Incineration plant.	10	CO3	
Q8	Describe in detail the layout of Binary fluid geothermal power system.	10	CO4	
Q9(a)	Explain in detail the working of OTEC open cycle system.	10	CO2	
- ()	OR	10		
Q9(b)	Explain the principle of CO-Generation and discuss the factors influencing			
	cogeneration choice.	10	CO2	
		10		
	SECTION-C			
Q10	(a) Explain the chemistry of gasifier and list down various types of gasifiers with their	20	CO3	

	advantages and disadvantages		
	(b) Describe the concept of Biomass Pyrolysis and explain the Pyrolysis of urban waste		CO4
	with the help of neat diagram.		
Q11(a)	(a) Discuss in detail any two fixed dome type of biogas plant with their pros and cons.	10	
	(b) A tidal power plant of the simple single basin type, has a basin area of $30*10^6$ m ² .		
	The tide has a range of 12m. The turbine however, stops operating when the head on	10	CO2
	it falls below 3m. Calculate the energy generated in one filling (or emptying)		
	process, in kilowatt hours if the turbine generator efficiency is 73%.		
	OR		-
Q11(b)	(a) Describe any 4 horizontal axis wind turbines with their advantages and		
	disadvantages.	10	
	(b) Wind at 1 standard atmospheric pressure and 15oC temperature has a velocity of		
	10m/s. The turbine has diameter of 120 m and its operating speed is 40 rpm at		
	maximum efficiency calculate	10	CO2
	(i) The total power density in the wind stream		
	(ii) The maximum obtainable power density assuming efficiency of 40%.		
	(iii) The total power produced in kW		
	(iv) The torque and axial thrust.		

Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination May 2019

	End Semester Examination, May 2019
Programme Na	me: B. Tech PSE and B. Tech Electrical
Course Name	: Renewable Energy Technology & Cogeneration
Course Code	: PSEG-471

Semester : VIII Time : 03 hrs Max. Marks : 100

Nos. of page(s) : 2

Instructions: Attempt all questions. Internal choice is given in Q9 and Q11 SECTION A

S. No.	Question Body	Marks	CO
Q1	Differentiate between beam and diffused radiation.	4	CO1
Q2	Classify low temperature thermal storage system and list any four advantages of	4	CO2
Q3	phase change energy storage system.Tabulate various biomass conversion technologies indicating the principle products		
Q3	obtained from the conversion.	4	CO3
Q4	Explain the reason for the variation in wind speed with increase in height from the earth surface.	4	CO2
Q5	Explain in brief the equivalent circuit of solar cell.	4	CO1
SECTION B			
Q6	Explain in detail various wind resource assessment techniques and derive the	10	CO2
07	expression of power available in the wind.		
Q7	Explain in detail the working of combined cycle power plant and explain its Temperature and entropy diagram.	10	CO 4
Q8	Discuss the methods for maintaining biogas production and with the help of neat diagram explain the biomass gasifier engine system.	10	CO3
Q9(a)	Draw and explain the layout of solar pond electrical power plant and list down the application of solar ponds.	10	C01
	OR		
Q9(b)	Discuss the concept of Schottky Junction and discuss any two recently discovered		
Q2(0)	PV cell materials with their advantages and disadvantages.	10	CO1
	SECTION-C		
Q10	i. "CO-Generation results into the increased overall efficiency of the system"	10	CO4
•	Justify the statement by giving some relevant examples.	-	
	ii. Discuss the methodology of conducting performance test on CO-Generation		

		system and list various factors which can influence the performance of CO-	10	
		Generation.		
Q11(a)	i.	A feasibility study must be carried for implementing the wind power plant. As an		
		engineer you have been assigned the responsibility to carry out the feasibility		
		study of determining the potential of wind power in the identified area. Discuss	10	CO1
		the methodology and the data required to determine the wind potential in the		
		identified area. Also list various types of instruments that will be used to conduct		
		this feasibility study.		
	ii.	Derive and explain the methodology of determining the Energy potential in	10	CO3
		Simple single basin tidal system.		
		OR		
Q11(b)	i.	Discuss in detail the open and closed cycle OTEC system and discuss their		
		merits and demerits.	10	CO1
	ii.	The observed difference between the high and low water tide is 8.5 m, for a		
		proposed tidal site. The basin area is about 0.5 square kilometer which can		
		generate power for 3 hours in each cycle. The average available head is assumed		
		to be 8 m, and the overall efficiency of the generation to be 70%. Calculate the	10	CO3
		power in HP at any instant and the yearly power output. Average specific weight		
		of sea water is assumed to be 1025 kg/m ³ .		