Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

~ ~ ~ ~ ~ ~ ~

Programme Nam	e: M Tech Energy Systems
Course Name	: Energy Audit

Semester : II Time : 03 hrs Max. Marks : 100

Course Maine	. Energy Audi
Course Code	: EPEC-7029
TT O ()	•

Nos. of page(s) : 3

				SECT	ION A				
S. No.			Que	stion Bo	ody			Marks	CO
Q 1	List down the steps a	nd outc	omes of Pr	e-Audit	Phase of	f Energy	y Audit.	4	CO1
Q 2	Describe the key eler	nents of	f monitorin	g and ta	rgeting s	system.		4	CO2
Q 3	Describe the concept	of fuel	and energy	v substit	ution.			4	CO3
Q 4	List energy audit prir	nciples i	n line with	ISO-50	002 stan	dard.		4	CO5
Q 5	Differentiate between	n energy	performa	nce indi	cators an	d bench	marking parameters.	4	CO3
			1		ION B			-	
Q 6	Explain in detail any	DSM p	rogram rur			s benefi	ts.	10	CO4
Q 7	The cash flows in tw	o diffe	rent energy	conser	vation p	rojects	are given in the table		
-					-	-	decide which project		
		-					1 0		
	to invest in as the m	nanagen	nent is inte	erested i	n invest	ing in c	only one project. The		
	company is likely t	to cons	ider any j	project	which g	gives a	minimum return on		
	investment of 18%. F	Please ju	stify your	choice.					
			Projec	t A	Proje	ct B	1		
		Investm ent	17,50,0		12,00,			10	CO5
		Year	Expenses	Savings	Expenses	Savings			
		1		4,00,000		4,50,000			
		2		4,00,000		4,00,000			
		3		4,00,000		3,50,000 3,00,000			
		5	1,00,000	6,00,000		2,50,000			
		6	2,00,000	6,00,000		2,00,000			
		7		6,00,000		1,16,650			
		8		3,80,300					
Q 8	The energy consum	ption p	attern in a	t steel	rolling r	nill ove	er 8-month period is	10	CO1,
	provided in the table	below;							CO5
	Mont	th Pro	oduction (Fons)	Coal C	onsum	otion		

				(Tons)		
		1	488	422		
		2	553	412		
		3	455	411		
		4	325	363		
		5	488	438		
		6 7	<u>585</u> 455	426		
		8	419	396		
	Estimate					
	(i)	Fixed energy of	consumption in the	plant.		
	(ii)			production of 600 tons/month		
Q 9 (a)	1	1	1 0	n of an engineering industry	, i i i i i i i i i i i i i i i i i i i	
	being use	ed indirectly to	heat 6000 litres/	hr of water by 10°C. The	industry is	
	planning	to convert from	LPG to electrical h	eating.		
	Othe	r data:				
	Annu	al operating ho	ours = 3000 hours			
	Effici	iency of indirec	t heating with LP	G = 85%		
	Calo	rific value of LI	PG = 11000 kcal/kg	g,		
	Land	ed cost of LPG	= Rs.75/kg		10	CO2, CO5
	Cost	of electricity =	Rs.6/kwh.			
		G is replaced w ite simple payba		ng with an investment is Rs	.1.5 lakhs,	
	2) Calcula	ate the CO_2 emis	ssions in both the c	ases. Consider emission facto	rs for LPG	
				ity as 0.81 tons of CO ₂ /MWh		
				OR		
Q 9 (b)	The avera	age monthly ele	ectricity consumpti	on in an Aluminium produc	ing unit is	
	12.35 lac	kWh. The oth	er energy sources	used in the manufacturing J	process are	
	Furnace of	oil (GCV-9660 k	ccal/Ltr) and HSD	(GCV-9410 kcal/Ltr). If the	annual fuel 10	CO2, CO5
	oil consu	mption is 5760 l	cL of Furnace oil (s	sp. gr. 0.92) and 720 kL of H	SD (sp. gr.	
	0.88), det	ermine if the un		signated Consumer under the	EC Act?	
			SEC	CTION-C		

	2012-13. The management has implemented various energy conservation		
	measures as part of PAT scheme and reduced the specific energy consumption		
	from 53 GJ/ tonne of product to 50 GJ/tonne of product. The actual production		
	during the assessment year (2014-15) is 124141 MT. Calculate the plant energy		
	performance and state your inference.	-	
	ii) Explain PAT Scheme and its potential impact?	5	
Q11(a)	Explain the principle of ISO-50001 in detail, discuss the conditions based on which		
	you can raise a nonconformity in the organization as a Lead Auditor with some	20	CO3, CO5
	examples.		
Q11(b)	Giving some relevant evidence explain in detail how you can identify the significant		
	energy use in any organization. Discuss how the energy performance of any	20	CO3, CO5
	organization is evaluated giving some examples.		

Name: Enrolme	nt No: UNIVERSITY WITH A PURPOSE	•			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019				
Progran		ter : II			
Course 1	Name : Energy Audit Time	: 03	hrs		
Course	Code : EPEC-7029 Max. Max. Max. Max. Max. Max. Max. Max.	Max. Marks : 100			
Nos. of p	page(s) : 2				
	SECTION A				
S. No.	Question Body	Marks	CO		
Q 1	List the categorization of various energy conservation options available in the industries based on financial aspects by the energy auditor.	4	CO1		

Q 2	Describe the energy audit report format in brief.	4	CO2
Q 3	Define Energy Benchmarking and List down the key elements of Energy Monitoring and Targeting	4	CO3
Q 4	List the steps involved in PDCA cycle of Energy Management system for continuous improvement.	4	CO4
Q 5	List the information obtained after post audit phase.	4	CO5
	SECTION B		
Q 6	A company has got following two investment options:		
	Option A:		
	Investment envisaged Rs. 40 lakhs with an annual return of Rs. 8 lakhs;		
	Life of the project is 10 years		
	Option B:	10	CO5
	Investment envisaged Rs. 24 lakhs; Annual return Rs. 5 lakhs;		
	Life of the project is 8 years		
	Calculate IRR of both the options and suggest which option the company should		
	select.		
Q 7	An evaporator is to be fed with 10,000 kg/hr of a solution having 1 % solids. The		
	feed is at 38°C. It is to be concentrated to 2% solids. Steam is entering at a total		
	enthalpy of 640 kCal/kg and the condensate leaves at 100°C. Enthalpies of feed are		
	38.1 kcal/kg, product solution is 100.8 kCal/kg and that of the vapour is 640	10	CO2
	kCal/kg. Find the mass of vapour formed per hour and the mass of steam used per		
	hour.		
Q 8	Discuss how DSM program can be formulated, list the requirement for devising any	10	603
	new DSM program.	10	CO3
Q 9 (a)	Explain the energy planning process in line with ISO-50001 in detail.	10	CO1, CO4
	OR		
Q 9 (b)	Explain in detail Energy Audit Planning in line with ISO-50002.	10	CO1, CO4
	SECTION-C		
Q10	i) Discuss the Bachat Lamp Yojna (BLY) in detail and explain how BLY was		
	implemented in India listing the participating agencies and their roles.	10	CO1
	ii) Explain in detail how UDAY scheme and UJALA Scheme has supported in	10	CO3
	making Indian Economy strong.	-	

Q11(a)	During the ISO-50001 audit of educational institute you have found out following				
	(i) That even when the lecture is over students and faculty did not turn of the lights				
	and fans of the classroom. When you as a Lead Auditor have informed the same				
	to the energy manager of the institute he replied confidently that the				
	responsibility of shutting down the electrical load is given to the guards and they				
	shut down the lights and fans and manager gives no written or visual proof for	20	CO3,		
	the same.	20	CO5		
	(ii) Education institute is still using the older technologies in some places with				
	reduced efficiency since the institute was formulated (10 years).				
	Looking above two points explain weather you will raise any non-conformity and				
	justify your answer with suitable proofs and determine the potential impact on the				
	auditee organization due to above incidents.				
OR					
Q11(b)	Explain in detail how you can implement ISO-50001 in UPES, List down suitable	20	СОЗ,		
	documents and record which are required for the implementation.	20	CO5		