

10.	If the "mean optical power" of $120 \mu \mathrm{~W}$ is launched into an 8 km length of fiber and the mean optical power at the fiber output is $3 \mu \mathrm{~W}$, Determine the following: i) The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices; ii) The signal attenuation per kilometer for the fiber. iii) The overall signal attenuation for a 10 km optical link using the same fiber with splices at 1 km intervals, each giving an attenuation of 1 dB ; iv) The numerical input/output power ratio.	$\begin{aligned} & 4 \times 5 \\ & =20 \end{aligned}$	CO2
11.	(a)Illustrate the SONET architecture. (b)Draw and explain the output patterns of source to fiber power launching. (c)Describe the structure of PIN diode	10 5 5	$\begin{aligned} & \hline \mathrm{CO5} \\ & \mathrm{CO} \end{aligned}$
12.	(a)Glass fiber exhibits material dispersion given by $\lambda\left(\mathrm{d}^{2} \mathrm{n}_{1} / \mathrm{d} \lambda^{2}\right)$ of 0.025 .Determine material dispersion parameter at a wavelength of $0.85 \mu \mathrm{~m}$ and estimate rms pulse broadening/km for good LED source with an RMS spectral width of 20 nm at this wavelength. (b) Differentiate between the photo diode parameters, 'Quantum limit' and 'Dark current'	12 8	CO4

Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 $\right)$			
SECTION A		$5 \mathrm{x} 4=20$	
S. No.		Marks	CO
1.	(a)Find the transmission capacity of an optical fiber if the bit rate 20 KHz and the repeater is spaced at 100 m . (b)Determine the phase change when the light ray is totally internally reflected with the refractive index $\mathrm{n}=1.5$ and incident angle is 30°.	4	CO1
2.	How Polarization mode dispersion exists in the fibers?	4	CO2
3.	Describe power coupling from light source to optical fiber	4	CO3
4.	Explain Signal distortion in optical fibers due to attenuation and absorption	4	CO4
5.	Write about Semiconductor Optical Amplifiers.	4	CO5
SECTION B		$4 \times 10=40$	
6.	(a)Describe the significance of mode field distribution. (b)A multimode step-index fiber has a relative index difference of 2% and a core refractive index of 1.5 .The number of modes propagating at a wavelength of $1.3 \mu \mathrm{~m}$ is 1000 . Calculate the diameter of the fiber core.	$\begin{aligned} & 3 \\ & 7 \end{aligned}$	C01
7.	(a)Explain microbending losses. (b)A step index fiber has normalized frequency 25 and at an 1100 nm wavelength. If the core radius is $25 \mu \mathrm{~m}$, determine the numerical aperture.	$\begin{aligned} & 6 \\ & 4 \end{aligned}$	CO2
8.	(a)Draw and explain the output patterns of source to fiber power launching. (b)Describe the structure of Distributed feedback LASER.	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$	CO3
9.	Explain the operation of Intensity Modulation through Light Interruption in optical	10	$\mathrm{CO5}$

	sensors		
SECTION-C $2 \times 20=40$ Write any two questions			
10.	(a)A graded index fiber with parabolic profile support the propagation of 700 guided modes. The fiber has a relative refractive index difference of 2% a core refractive index of 1.45 and a core diameter of $75 \mu \mathrm{~m}$. Calculate the wavelength of light propagating in the fiber .Estimate the maximum diameter of the fiber core which can give single-mode operation at the same wavelength. (b)Describe Generic SONET network.	12 8	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO5} \end{aligned}$
11.	If the "mean optical power" of $120 \mu \mathrm{~W}$ is launched into an 8 km length of fiber and the mean optical power at the fiber output is $3 \mu \mathrm{~W}$, Determine the following: i) The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices; ii) The signal attenuation per kilometer for the fiber. iii) The overall signal attenuation for a 10 km optical link using the same fiber with splices at 1 km intervals, each giving an attenuation of 1 dB ; iv) The numerical input/output power ratio.	20	CO3
12.	(a)An optical amplifier has the noise figure 3.6 dB . The input signal has a signal-tonoise ratio of 50 dB . Compute the output signal to noise ratio. (b) The quantum efficiency of an InGaAs PIN diode is 80% in the wave length range between 1300 nm and 1600 nm . Compute the range of responsivity of the PIN diode in the specified wavelength range. (c) Differentiate between the photo diode parameters, 'Quantum limit' and 'Dark current'	$\begin{aligned} & 8 \\ & 8 \\ & 4 \end{aligned}$	CO4

