Name: Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STU End Semester Examination, May 2019	DIES		
Programme Name:B. Tech ICESemesterCourse Name:Optimal & Adaptive controlTime			: 03 hrs	
	SECTION A			
S. No.		Marks	CO	
Q 1	Which approach you will opt for trajectory control and why?	4	CO2	
Q.2	Discuss the role of artificial intelligence for adaptive control.	4	CO1	
Q.3	Write down the cost function for output regulator problem with significance of each weigh matrix.	4	CO3	
Q.4	Differentiate hard constraint & soft constraint for optimal control approach with example.	h 4	CO2	
Q.5	Present the five practical example for adaptive control approach.	4	CO4	
	SECTION B	ŀ		
Q .6	Devise the performance index for minimum deviation of state about C with minimum control effort also consider the final state and final time as felxible and initial state and initial time as fixed boundaries.		CO3	
Q.7	Explain MRAC adaptive control schema and discuss the advantage over self-tuning adaptive control.	e 10	CO4	
Q.8	Given the linear continuous-time system $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $ Check the observability of the system.	10	C01	
Q.9	 Check the observability of the system. Sketch a schematic diagram of a speed control system using the following units motor, tacho-generator, A/D convertor, digital computer, D/A converter and power amplifier. Explain the function of each section of the diagram. 		CO2	

	SECTION-C		
Q .10	Consider a system with the state equation given below $\dot{x}_1(t) = x_2(t)\dot{x}_2(t) = u(t)$ Determine optimal u(t) and x(t) such that P.I.; $J = \frac{1}{2} \int_{t_0}^{t_f} u^2(t) dt$ is minimum Boundary condition are $x(0) = [x_1(0)x_2(0)]' = [12]$ $x(2) = [x_1(2)x_2(2)]' = [00]$ OR Write the Euler-Lagrange equation when <i>F</i> is given by (a) $F(\alpha, \beta, \gamma) = \sin \beta$, (b) $F(\alpha, \beta, \gamma) = \alpha^3 \beta^3$,	20	CO3,4
Q.11	(c) $F(\alpha, \beta, \gamma) = \alpha^2 - \beta^2$, (d) $F(\alpha, \beta, \gamma) = 2\gamma\beta - \beta^2 + 3\beta\alpha^2$. A translation mechanical system is given below M_1 M_2 $f(t)$ Frictionless Form the free body diagram, and select velocity & acceleration of position x ₁ , x ₂ as state variables. Derive the state space model for the selected state variables.	20	CO2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Programme Nar	ne:	B. Tech ICE	Semester : VIII
Course Name	:	Optimal & Adaptive control	Time : 03 hrs
Course Code	:	ICEG 412	Max. Marks : 100
Nos. of page(s)	:	2	
Instructions:		All Questions are compulsory	

SECTION A

S. No.		Marks	СО
Q 1	Discuss the significance of controllability and observability in designing LQR solution.	4	CO1
Q.2	Present the five practical example for optimal control approach.	4	CO2
Q.3	Write down the cost function for state regulator problem with significance of each weight matrix.	4	CO3
Q.4	Give the state and co-state equation derive from Hamiltonian function.	4	CO3
Q.5	Name the four estimation methods for adaptive control.	4	CO4
	SECTION B (Attempt any three question)		
Q .6	Design the flow chart of parameter estimation method for adaptive control.	10	CO4
Q.7	Derive the 'Euler-Lagrange' equation for a 'fixed end' problem	10	CO2
Q.8	Given the linear continuous-time system $ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u $ $ y = \begin{bmatrix} 2 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $ Check the controllability of the system.	10	CO1
Q.9	Devise the performance index for minimum deviation of state about C with minimum control effort also consider the final state and time as felxible and initial state and time as fixed	10	CO3

	boundaries.		
	SECTION-C		
Q .10	Consider a system with the state equation given below $\dot{x}_1(t) = x_2(t)\dot{x}_2(t) = u(t)$ Determine optimal u(t) and x(t) such that P.I.; $J = \frac{1}{2} \int_{t_0}^{t_1} u^2(t) dt$ is minimum Boundary condition are $x(0) = [x_1(0)x_2(0)]' = [12]$ $x(2) = [x_1(2)x_2(2)]' = [0 \ free] OR$ Find critical curves for the following functions (a) $I(x) = \int_0^{\frac{\pi}{2}} [(x(t))^2 - (x'(t))^2] dt$, $x(0) = 0$ and $x(\frac{\pi}{2})$ is free. (b) $I(x) = \int_0^{\frac{\pi}{2}} [(x(t))^2 - (x'(t))^2] dt$, $x(0) = 1$ and $x(\frac{\pi}{2})$ is free.	20	CO3,4
Q.11	Derive a state space model for the system shown. The input is fa and the output is z. $ \begin{array}{c} $	20	CO 2