Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Chemical Engineering Thermodynamics-II Program: B.Tech CERP & APE-Gas Course Code: CHCE-2008

Semester: IV Time 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (30 marks)		
S. No.		Marks	CO
Q 1	(a) Explain the significance of Virial coefficients	4 4	
	(b) Differentiate between Two-parameter and Three-parameter correspondence state theorems		CO1
Q 2	Water (1) – hydrazine (2) system forms an azeotrope containing 58.5 % (mol) hydrazine at 393 K and 101.3 kPa. Calculate the equilibrium vapor composition for a solution containing 20 % (mol) hydrazine. The relative volatility of water with reference to hydrazine is 1.6, is assumed to remain constant in the temperature range involved. The vapor pressure of Hydrazine at 393 K is 124.76 kPa. Use Van laar model. $A = \ln\gamma_1 (1 + x_2 \ln\gamma_2/x_1 \ln\gamma_1)^2 \qquad B = \ln\gamma_2 (1 + x_1 \ln\gamma_1/x_2 \ln\gamma_2)^2$	8	CO4
Q 3	Deduce Gibbs – Duhem equation for a binary system Chemical Potential and also in terms of activity & activity coefficient	7	CO3
Q 4	Classify types of common adsorbents and discuss their characteristics	7	CO5
	SECTION B 45 marks		
Q 7	 (a) Interpret the following semi-empirical models in thermodynamics (i) Margules 3-suffix model (ii) Van laar model (b) Perform VLE calculations for the Methane (1)/ Ethylene (2) / Ethane (3) system using K-values (i) BUBL P, given x₁ = 0.1, x₂ = 0.5 and T = 222.15 K (ii) BUBL T, given x₁ = 0.12 and x₂ = 0.4 and P = 17.24 bar 	8 7	CO4

Q 8	The excess Gibbs energy of a binary liquid mixture at T & P is given by,		
	$G^{E}/RT = (-2.6x_1 - 1.8x_2) x_1x_2$		
	 (i) Find expression for lnγ₁ & lnγ₂ at T & P (ii) Show that these expressions satisfy Gibbs-Duhem equation in terms of 	15	CO3
	activity coefficients. (iii) Show that $(d_{1})_{\alpha} = (d_{2})_{\alpha} = 0$	15	0.03
	(iii) Show that $(d \ln\gamma_1/dx_1)_{x_1=1} = (d \ln\gamma_2/dx_1)_{x_1=0} = 0$ (iv) Plot $\mathbf{G}^{\mathrm{E}}/\mathbf{RT}$, $\ln\gamma_1$ and $\ln\gamma_2$ as calculate by the given equation for $\mathbf{G}^{\mathrm{E}}/\mathbf{RT}$		
	and by the equation developed in (i) vs x_1 .		
Q 9	The molar volume cm³ mol⁻¹ of a binary liquid mixture at T and P is given by,		
	$\mathbf{V} = 120x_1 + 70\ x_2 + (15\ x_1 + 8\ x_2)\ x_1\ x_2$		
	(i) Find the expression for the partial molar volume of species 1 & 2 at T and P.		
	(ii) Show this equation satisfy the Gibbs-Duhem equation in terms of partial molar volumes.	15	CO3
	(iii) Find the values of V, partial molar volume of species 1 & 2 (iv) Show that $(d\dot{V}_1/dx_1)_{x_1=1} = (d\dot{V}_2/dx_1)_{x_1=0} = 0$		
	(iv) Show that $(dV_1/dx_{1)x_{1}=1} = (dV_2/dx_1)_{x_1=0} = 0$		
	SECTION-C 1 x 25 = 25 marks		
Q 10	For the Acetone (1) / Methanol (2) system a vapor mixture for which, $z_1 = 0.25$ and $z_2 = 0.75$ is cooled to temperature T in the two-phase region and flow into a separation chamber at a pressure of 1 bar. If the composition of liquid product is to be $x_1 = 0.175$, what is the required value of T and what is the value of y_1 ? For liquid mixtures of the system to a good approximation		CO4
	$\ln\gamma_1 = 0.64 x_2^2 \qquad \qquad \ln\gamma_2 = 0.64 x_1^2$	25	
	Acetone (1) : A = 14.3916, B = 2795.82 and C = 230 Methanol (2) : A = 16.5938, B = 3644.3 and C = 239.76		
	OR		
	A process stream contains light species "1" and heavy species "2". A relative pure		

liquid stream containing mostly 2 is desired obtained by a single-stage liquid and vapor separation. Specifications on the equilibrium composition are $x_1 = 0.002$ and $y_1 = 0.950$. Use data given below to determine T (K) and P (bar) for the separator. Assume modified Raoult's law is applies, the calculated P should validate this assumption.	
For liquid phase, $\ln \gamma_1 = 0.93 x_2^2$ $\ln \gamma_2 = 0.93 x_1^2$	
$\ln P_1^{sat} / bar = A_i - B_i / T(K)$	
$A_1 = 10.08, B_1 = 2572.0, A_2 = 11.63 \text{ and } B_2 = 6250$	

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Chemical Engineering Thermodynamics-II Program: B.Tech CERP & APE-Gas Course Code: CHCE-2008

Semester: IV Time 03 hrs. Max. Marks: 100

Instructions:

Instruc	SECTION A		
	(30 marks)		
S. No.		Marks	CO
Q 1	Deduce an expression for Pitzer correlation for Second Virial Coefficient	8	CO1
Q 2	Under atmospheric conditions, the Acetone (1)-Chloroform (2) azeotrope boils at		
	64.6°C and contains 33.5 mol. % Acetone. The vapor pressure of Acetone and		
	Chloroform at this temperature are 995 mmHg and 885 mmHg respectively.		
	Calculate the composition of the vapor at this temperature in equilibrium with a	8	CO4
	liquid analyzing 11.1 mol. % Acetone. Apply Van laar equations of the following		
	form:		
	$A = \ln \gamma_1 (1 + x_2 \ln \gamma_2 / x_1 \ln \gamma_1)^2 \qquad B = \ln \gamma_2 (1 + x_1 \ln \gamma_1 / x_2 \ln \gamma_2)^2$		
Q 3	Deduce Gibbs – Duhem equation for a binary system Chemical Potential and also	_	~ ~ ~
	in terms of activity & activity coefficient	7	CO3
Q 4	Classify types of common adsorbents and discuss their characteristics	7	C05
	SECTION B		
	45 marks		
Q 7	(a) Interpret the following semi-empirical models in thermodynamics		
	(iii) Margules 3-suffix model	8	
	(iv) Van laar model	Ū	
	(c) Perform VLE calculations for the Methane (1) / Ethylene (2) / Ethane (3)		CO4
	system using K-values		
	(iii) DEW P, given $y_1 = 0.5$, $y_2 = 0.25$ and T = 222.15 K		
	(iv) DEW T , given $y_1 = 0.43$ and $y_2 = 0.36$ and P = 17.24 bar	7	
Q 8	Derive the expressions for G ^{id} , S ^{id} , V ^{id} and H ^{id} for Ideal solutions mixtures with		
	proper assumptions	15	CO3
Q 9	For a binary liquid mixture at T and P , the molar volume is given by,	15	CO3
	$\mathbf{V} = 120x_1 + 70\ x_2 + (15\ x_1 + 8\ x_2)\ x_1\ x_2$		
	(v) Deduce the expression for the partial molar volume of species 1 & 2 at T		

	and P. (vi) Prove the equation satisfy the Gibbs-Duhem equation in terms of partial molar volumes. (vii) Show the values of V, partial molar volume of species 1 & 2 (viii) Show that $(d\dot{V}_1/dx_{1)x_{1=1}} = (d\dot{V}_2/dx_1)_{x_{1=0}} = 0$		
	SECTION-C 1 x 25 = 25 marks		
Q 10	A system consists of a vapor mixture of Acetone (1) / Methanol (2) in which, $z_1 = 0.35$ and $z_2 = 0.65$ is cooled to temperature T in the two-phase region and flow into a separation chamber at a pressure of 1 bar. If the composition of liquid product is to be $x_1 = 0.275$, what is the required value of T and what is the value of y_1 ? For liquid mixtures of the system to a good approximation		
	$\ln \gamma_1 = 0.63 x_2^2$ $\ln \gamma_2 = 0.63 x_1^2$ Acetone (1) : A = 14.3916, B = 2795.82 and C = 230 Methanol (2) : A = 16.5938, B = 3644.3 and C = 239.76	25	
	OR A process stream contains light species "1" and heavy species "2". A relative pure liquid stream containing mostly 2 is desired obtained by a single-stage liquid and vapor separation. Specifications on the equilibrium composition are $x_1 = 0.002$ and $y_1 = 0.950$. Use data given below to determine T (K) and P (bar) for the separator. Assume modified Raoult's law is applies, the calculated P should validate this assumption.		CO4
	For liquid phase, $\ln \gamma_1 = 0.64 x_2^2$ $\ln \gamma_2 = 0.64 x_1^2$ $\ln P_1^{sat} / bar = A_i - B_i / T(K)$		
	$A_1 = 10.08, B_1 = 2572.0, A_2 = 11.63 \text{ and } B_2 = 6250$		