Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019			
Course: Chemical Engineering II (Unit Operations) (CHEG 237) Program: BTech Fires and Safety Engineering Time: 03 hrs. Semester: IV Max. Marks: 100 Instructions: Students are advised to answer questions sequentially and start each answer of a new sheet of paper.			
SECTION AAll the questions are compulsory (Max marks $4 \times 5=20$)			
S. No.		Marks	CO
Q1	List various types of screens used in water/wastewater treatment and their corresponding size.	5	$\begin{gathered} \mathrm{CO1} \\ \mathrm{CO} 4 \end{gathered}$
Q2	What are ceramics? List various types of ceramics.	5	$\mathrm{CO5}$
Q3	What is the advantage of using conveyor belts for transportation of material?	5	CO1
Q4	Define i) Fourier's Law and ii) Fick's Law.	5	CO5
SECTION B All questions are compulsory (Max marks $4 \times 10=40$)			
Q5	Explain the working of a double pipe and a shell and tube heat exchanger with the help of a diagram.	10	$\begin{aligned} & \mathrm{CO} 3, \\ & \mathrm{CO} 4 \end{aligned}$
Q6	How do ceramics compare with metals? Which is a better choice for process requiring material with high hardness?	10	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO5} \\ & \hline \end{aligned}$
Q7	What is crystallization? What is the basic requirement for any crystallizer? What is the role of solubility curve of the solute in crystallization?	10	$\begin{aligned} & \mathrm{CO2}, \\ & \mathrm{CO}, \end{aligned}$
Q8	With the help of a diagram describe the working of a rapid sand filter in detail. Or With the help of a diagram describe the working of a slow sand filter in detail.	10	$\begin{aligned} & \text { CO1, } \\ & \text { CO5 } \end{aligned}$
SECTION-C ($2 \times 20=40$)Answer any two question from this section (Max marks 40)			
Q9	Derive the expression for heat transfer (from inside of the cylinder to outside) through a hollow cylinder. The inside radius of the cylinder is r_{i}, the outside radius is r_{o}, and the length of the cylinder is L. The thermal conductivity of the material of which the cylinder is made is k. The temperature of the outside surface is T_{o}, and that of the inside surface is T_{i}. Explain all the assumptions made in solving the problem. Or Consider a flat wall constructed of a series of layers (A, B and C). Let the thickness of the layers be B_{A}, B_{B} and B_{C} and the average conductivities of the material of which the layers are made be k_{A}, k_{B} and k_{C}, respectively. Also let the area of the compound wall, perpendicular to the direction of heat transfer, be A. Let $\Delta T_{A}, \Delta T_{B}$ and ΔT_{C} be the temperature drops across the layers A, B and C ,	20	$\begin{aligned} & \mathrm{CO2}, \\ & \mathrm{CO}, \end{aligned}$

Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019			
Course: Chemical Engineering II (Unit Operations) (CHEG 237) Program: BTech Fires and Safety Engineering Time: 03 hrs. Semester: IV Max. Marks: 100 Instructions: Students are advised to answer questions sequentially and start each answer of a new sheet of paper.			
SECTION AAll the questions are compulsory (Max marks $4 \times 5=20$)			
S. No.		Marks	CO
Q1	List various types of screens used in water/wastewater treatment and their corresponding size.	5	$\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO4} \\ & \hline \end{aligned}$
Q2	Describe the steps involved in making activated carbon.	5	CO1
Q3	Under what conditions use of conveyor belts is more advantageous over manual handling for transportation of material.	5	CO4
Q4	Define i) magma and ii) CSD.	5	CO1
SECTION B All questions are compulsory (Max marks $4 \times 10=40$)			
Q5	Explain the working of a double pipe and a shell and tube heat exchanger with the help of a diagram.	10	$\begin{aligned} & \mathrm{CO} 3, \\ & \mathrm{CO4} \\ & \hline \end{aligned}$
Q6	What is the importance of material balance in chemical process design? Write steps involved in material balance calculations.	10	$\begin{aligned} & \mathrm{CO} 3, \\ & \mathrm{CO5} \end{aligned}$
Q7	What is crystallization? What is the basic requirement for any crystallizer? What is the role of solubility curve of the solute in crystallization?	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \end{aligned}$
Q8	With the help of a diagram describe the working of a rapid sand filter in detail. Or With the help of a diagram describe the working of a slow sand filter in detail.	10	$\begin{aligned} & \text { CO1, } \\ & \text { CO5 } \end{aligned}$
SECTION-C ($2 \times 20=40$) Answer any two question from this section (Max marks 40)			
Q9	Derive the expression for heat transfer (from inside of the cylinder to outside) through a hollow cylinder. The inside radius of the cylinder is r_{i}, the outside radius is r_{o}, and the length of the cylinder is L. The thermal conductivity of the material of which the cylinder is made is k. The temperature of the outside surface is T_{o}, and that of the inside surface is T_{i}. Explain all the assumptions made in solving the problem. Or Consider a flat wall constructed of a series of layers (A, B and C). Let the thickness of the layers be B_{A}, B_{B} and B_{C} and the average conductivities of the material of which the layers are made be k_{A}, k_{B} and k_{C}, respectively. Also let the area of the compound wall, perpendicular to the direction of heat transfer, be A.	20	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} \end{aligned}$

	Let $\Delta T_{A}, \Delta T_{B}$ and ΔT_{C} be the temperature drops across the layers A, B and C , respectively. Derive an equation for calculating the rate of heat flow through the series of layers and show how the rate can be calculated as the ratio of the overall temperature drop $\Delta \mathrm{T}$ to the overall thermal resistance of the wall.													
Q10	A saturated liquid mixture containing 60 mole $\%$ benzene and 40 mole $\%$ toluene is to be distilled continuously into a distillate product containing 90 mole $\%$ benzene and the bottom product containing 5 mole $\%$ benzene. The fractional distillation column will operate at approximately constant pressure of 1 atm . The reflux ratio is 2 . How many theoretical plates must the column have if the feed is introduced into the eighth plate? Equilibrium data are:												20	CO5
		0	0.017	0.07 5	0.13	0.211	0.288	0.37	$\begin{aligned} & 0.41 \\ & 1 \end{aligned}$	0.581	0.78	1		
		0	0.039	0.16 1	0.261	0.393	0.496	0.591	0.63 2	0.777	0.9	1		
	Where $\mathrm{x}=$ mole fraction of methanol in liquid And $y=$ mole fraction of methanol in vapor What will be the effect on the overall economy of the process if the thermodynamic state of the feed is changed from saturated liquid to saturated vapour mixture?													

