| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| Course <br> Progra <br> Course | UNIVERSITY OF PETROLEUM AND ENERGY STUDIES   <br>  End Semester Examination, May 2019  <br> Drilling Hydraulics  Semester: I <br> : B.Tech APE UP Time 03 hrs  <br> Code: PEAU 2003 Max. Mark  | $: 100$ |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Explain in general terms, graphically and mathematically the: Newtonian Power Law and Bingham Plastic rheological Models? | 4 | CO3 |
| Q 2 | Describe the factors which influence the pressure drop in a drilling system? | 4 | CO2 |
| Q 3 | Describe in general terms, the factors which influence the pressure drop across a nozzle? | 4 | CO5 |
| Q 4 | Explain the technique for determining the optimum hydraulics at a drill bit using the hydraulic horse power criteria? | 4 | CO4 |
| Q 5 | List and describe the functions of drilling fluids and the properties which influence the capability of the fluid to achieve these functions? | 4 | CO1 |
| SECTION B |  |  |  |
| Q 6 | Determine the slip velocity and transport velocity for the following well data: <br> Depth $\quad=9000 \mathrm{ft}$. <br> Hole Diameter $\quad=12.25$ inch. <br> Drill Pipe $\quad=5$ inch $/ 4.276$ inch. <br> Flow Rate $\quad=500 \mathrm{gpm}$. <br> Mud density $\quad=10 \mathrm{ppg}$. <br> Density of rock $=21 \mathrm{ppg}$. <br> Average particle size $=0.28$ inch. <br> Viscometer readings: $\theta_{600}=90$ <br> $\theta_{300}=50$ | 10 | CO5 |
| Q 7 | Determine surge pressure for plugged pipe: <br> Date: <br> Well depth $=15,000 \mathrm{ft}$ <br> Hole size $=7-7 / 8$ in. <br> Drill pipe OD $=4-1 / 2$ in. <br> Drill pipe ID $=3.82$ in. <br> Drill collar = 6-1/4" O.D. x 2-3/4" ID <br> Drill collar length $=700 \mathrm{ft}$ <br> Mud weight $=15.0 \mathrm{ppg}$ <br> Viscometer readings: $\theta_{600}=140$ $\theta_{300}=80$ <br> Average pipe running speed $=270 \mathrm{ft} / \mathrm{min}$ | 10 | CO6 |


| Q 8 | a. Calculate the velocity of a fluid flowing through a 5 " $19.5 \mathrm{lb} / \mathrm{ft}$ drill pipe (I.D. $=4.276^{\prime \prime}$ ) at 150 gpm ? <br> b. Determine the pressure loss in the above situation if the fluid is a Bingham Plastic fluid with a plastic viscosity of 20 cp , a yield point of $15 \mathrm{lb} / 100 \mathrm{sq}$. ft and density is 100 ppg ? <br> c. Calculate the Pressure loss in the above situation if the fluid was a power law fluid with a non Newtonian index of 0.75 and a consistency index of 70 eq cp. | 2+4+4 | CO2 |
| :---: | :---: | :---: | :---: |
| Q9 | Prove that the effective viscosity in imperial units for an annular flow obeying a power law model is given by $\mu_{e}=200 K\left(D_{h}-D_{p}\right) / \frac{0.8}{\left(D_{h}-D_{p}\right)}\left(\frac{2 n+1}{n}\right) \eta^{n} V^{n-1}$ | 10 | CO3 |
|  | (OR) |  |  |
|  | Prove that the effective viscosity in metric units for a mud flow through drill pipe obeying Bingham plastic model is given by $\mu_{e}=P V+0.0798\left(\frac{D}{V}\right) Y P$ | 10 |  |
| SECTION-C |  |  |  |
| Q 10 | a. Describe the equipment and procedures used to determine the: density; rheological properties; gel strength; filtration properties; sand content and pH ? <br> b. Determine the quantity of barite required to change the density of mud from 12.53 ppg to 16.7 ppg . Calculate the increase in pit volume due to the addition of such a quantity of barite for an initial mud volume of $10 \mathrm{~m}^{3}$. | $\begin{aligned} & 15 \\ & + \\ & 5 \end{aligned}$ | CO1 |
| Q 11 | Determine the proper pump operating conditions and bit nozzle sizes for maximum jet impact force for the next bit run, using graphical analysis. The bit currently in use has three $12 / 32$-in nozzles. The driller has recorded that when the $9.6 \mathrm{lbm} / \mathrm{gal}$ mud is pumped at a rate of $485 \mathrm{gal} / \mathrm{min}$, a pump pressure of 2800 psig is observed and when the pump is slowed to a rate of $247 \mathrm{gal} / \mathrm{min}$, a pump pressure of 900 psig is observed. The pump is rated at $1,250 \mathrm{hp}$ and has an efficiency of 0.91 . The minimum flow rate to lift the cuttings is $225 \mathrm{gal} / \mathrm{min}$. The maximum allowable surface pressure is 3000 psig. The mud density will remain unchanged in the next bit run. | 20 | CO6 |


| Name: |  |
| :--- | :--- |
| Enrolment No: | UNIVERSITY WITHAPURPOSE |

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

## End Semester Examination, May 2019

Course: Drilling Hydraulics
Program: B.Tech APE UP
Course Code: PEAU 2003

Semester: IV
Time 03 hrs.
Max. Marks: 100

| SECTION A |  |  |  |
| :---: | :---: | :---: | :---: |
| S. No. |  | Marks | CO |
| Q 1 | Explain the impact of hydraulic horse power on the penetration of a drill bit? | 4 | CO5 |
| Q 2 | Discuss the rheological models which best describes the various types of drilling fluids and cement slurries? | 4 | CO2 |
| Q 3 | What are the suitable optimizing methods in bit hydraulics? | 4 | CO6 |
| Q 4 | Describe the equations and the influential factors involved in the calculation of pressure drop of Bingham plastic fluid in drill pipe? | 4 | CO3 |
| Q 5 | Describe the most important properties of drilling fluids? | 4 | CO1 |
| SECTION B |  |  |  |
| Q 6 |  | 10 | $\mathrm{CO5}$ |
| Q 7 | Define Swab and Surge Pressure. Also determine both the surge and swab pressure for the data listed below: <br> Data: Mud weight $=15.0 \mathrm{ppg}$; Plastic viscosity $=60 \mathrm{cP}$. <br> Yield point $=20 \mathrm{lb} / 100 \mathrm{sq} \mathrm{ft}$; Hole diameter $=7-7 / 8 \mathrm{in}$. <br> Drill pipe OD $=4-1 / 2 \mathrm{in}$., Drill pipe length $=14,300 \mathrm{ft}$ <br> Drill collar OD $=6-1 / 4$ in., Drill collar length $=700 \mathrm{ft}$ <br> Pipe running speed $=270 \mathrm{ft} / \mathrm{min}$. | 10 | CO6 |
| Q 8 | a. An upper plate of $20 \mathrm{~cm}^{2}$ area is spaced 1 cm above a stationary plate. Compute the viscosity in centipoise of a fluid between the plates is a force of 100 dyne is required to move the upper plate at a constant velocity of $10 \frac{\mathrm{~cm}}{\mathrm{sec}}$. <br> b. An upper plate of $20 \mathrm{~cm}^{2}$ area is spaced 1 cm above a stationary plate. Compute the yield point and plastic viscosity of a fluid between the plates if a force of 200 dynes is required to cause any movement of the upper plate and a force of 400 dynes is required to move the upper plate at a constant velocity of $10 \frac{\mathrm{~cm}}{\mathrm{sec}}$. | $5$ | CO |
| Q 9 | Prove that the effective viscosity in imperial units for an annular flow obeying a power law model is given by |  | CO3 |


|  | $\mu_{e}=200 K\left(D_{h}-D_{p}\right) / \frac{0.8}{\left(D_{h}-D_{p}\right)}\left(\frac{2 n+1}{n}\right) l^{n} V^{n-1}$ <br> (OR) <br> Prove that the effective viscosity in metric units for a mud flow through drill pipe obeying Bingham plastic model is given by $\mu_{e}=P V+0.0798\left(\frac{D}{V}\right) Y P$ | 10 |  |
| :---: | :---: | :---: | :---: |
|  | SECTION-C |  |  |
| Q 10 | a. Retort Analysis Data: <br> $\%$ by volume oil $=51 ; \%$ by volume water $=17 ; \%$ by volume solids $=32$. <br> Calculate: <br> a) The Oil/Water Ratio. <br> b) Volumes of oil and water, if the ratio is increased to $80 / 20$. <br> c) Volumes of oil and water, if the ratio is decreased to 70/30. <br> b. After setting a casing string at $10,000 \mathrm{ft}$, it is necessary to increase the density of 900 bbls of mud in the surface pits from 16 ppg to 17.5 ppg . The volume fraction of low density solids must also be reduced from $5.0 \%$ to $3.0 \%$, by dilution with fresh water. A final volume of 900 bbls is required. <br> i. What volume of mud should be discarded? <br> ii. How much water must be added? <br> iii. How many sacks of barite are required? <br> (Assume density of barite is $35 \mathrm{lb} / \mathrm{gal}$, density of water is $8.33 \mathrm{lb} / \mathrm{gal}$, and one sack of barite is 94 lbs ). | $\begin{gathered} 10 \\ + \\ 10 \end{gathered}$ | CO1 |
| Q 11 | Optimize bit hydraulics on a well by selecting proper jet sizes for impact force and hydraulic horsepower for two jets and three jets with the following data: <br> Mud weight $=13.0 \mathrm{ppg}$ <br> Maximum surface pressure $=3000 \mathrm{psi}$ <br> Pump pressure $1=3000 \mathrm{psi}$ <br> Pump rate $1=420 \mathrm{gpm}$ <br> Pump pressure $2=1300 \mathrm{psi}$ <br> Pump rate $2=275 \mathrm{gpm}$. | 20 | CO6 |

