Name: Enrolment No:					
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
	End Semester Examination, May 2019				
Programme Name: B. Tech-Electrical Engineering +Power system EngineeringSemesterCourse Name: Control System EngineeringTime			er : IV : 03 Hrs. arks : 100		
	SECTION A				
S. No.	Attempt all the questions.	Marks	CO		
Q 1	How do we decide the initial slop of Bode plot? Analyze it for Type 0 and 1 o systems.	rder 5	CO3		
Q 2	Draw the mechanical circuit diagram for the system shown in figure and write system equations. $F(t) \xrightarrow{K_1} x_1(t) \xrightarrow{K_2(t)} K_2$ $\underbrace{f(t) \xrightarrow{K_1} M_1 \xrightarrow{B_3} M_2}_{B_1} \underbrace{M_2}_{B_2}$	the 5	CO1		
Q 3	Analyze the (i) overdamping (ii) critical damping (iii) Underdamping conditions the second order system and also sketch the time responses.	s for 5	CO2		
Q 4	Determine the state space model for generalized second order polynomial difference equation, $a\frac{d^2x(t)}{dt^2} + b\frac{dx(t)}{dt} + cx(t) = u(t)$	ntial 5	CO4		
	SECTION B				
	Attempt all the questions.				
Q 5	Determine the transfer function C/R for the block diagram given below in figure as, $R \xrightarrow{+} G_1 \xrightarrow{-} G_2 \xrightarrow{-} G_3 \xrightarrow{-} C$ $+ \xrightarrow{-} G_1 \xrightarrow{-} G_2 \xrightarrow{+} G_3 \xrightarrow{-} C$. 10	CO1		
Q 6	Find the transfer function between C and R of the given signal flow graph show figure using Mason's gain formula.	n in 10	CO2		

	$R \circ \underbrace{\begin{array}{c} & -1 \\ G_2 \\ 1 \\ G_1 \\ G_1 \\ G_1 \\ G_1 \\ G_2 \\ G_3 \\ G_4 \\ $		
Q 7	The block diagram of unity feedback of a unity feedback control system is shown in figure, $R \xrightarrow{20} C$ Determine the characteristics equation of the system ω_n , ξ , ω_d , t_p and M_p . The time at which the first undershoot occurs, the time period of oscillations and the number of	10	CO2
Q 8	The state equations are written below- $\dot{X}_1 = x_2$ $\dot{X}_2 = x_3$ $\dot{X}_3 = -24x_1 - 26x_2 - 9x_3 + u$ Output equation as, $y = 2x_1 + x_2$ Check the controllability and observability of the system. SECTION-C	10	CO4
Q 9	Design state model of the given transfer function Using (a) state block diagram approach (b) state signal flow graph approach	10	CO4
Q 10	NOTE: Attempt both the parts (A). Determine the transfer matrix from the matrices given below	15+15	CO4+ CO3

$A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix} \text{ and } D = 0$	
(B). Sketch the asymptotic bode plot for the transfer function given below	
$G(s)H(s) = \frac{2(s+0.5)}{s^2(s+1)(s+0.5)}$	
From the bode plot determine,	
a) the phase cross over frequency	
b) the gain cross over frequency	
c) the gain margin	
d) the phase margin	
Is the system is stable?	

Name:				
Enrolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
	End Semester Examination, May 2019			
Programme Name: B. Tech-Electrical Engineering +Power system Engineering Semeste				
Course		: 03 Hrs.		
Course Nos. of		arks : 100		
-	ions: Attempt all the sections.			
	SECTION A			
S. No.	Attempt all the questions.	Marks	CO	
Q 1	A torque T Nm is applied to a shaft having a moment of Inertia J and coefficient of viscous friction of f produces an angular shift of θ radius. Obtain the transfer function relating θ and T.	5	CO1	
Q 2	The diagram given in Figure represents a closed loop control system for regulating the speed of a field controlled DC motor. Determine the value of the reference voltage if the speed is to be maintained at 100 rpm. Amplifier $Vr + \frac{2V/v}{K=10 \text{ rpm/V}}$ M N= 100 rpm $Vr + \frac{1}{K=10 \text{ rpm/V}}$ Techo generator 0.1V/rpm	5	CO2	
Q 3	Examine the closed loop stability of a system whose open-loop transfer function is given below (Use Routh Hurwitz Criterion method). $G(s)H(s) = \frac{50}{(s+1)(s+2)}$	5	CO3	
Q 4	Determine the state transition matric (STM) given that			
	$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	5	CO4	
SECTION B				
	Attempt all the questions.			

Q 5	Determine the transfer function C/R for the block diagram given below,		
	$R \xrightarrow{+} G_1 \xrightarrow{+} G_2 \xrightarrow{+} C$	10	CO1
Q 6	Find the transfer function between C and R of the given signal flow graph using Mason's gain formula, R G_1 G_2 G_2 -1	10	CO2
Q 7	Sketch the root locus for the open loop transfer function of a unity feedback control system having given, $G(S) = \frac{K}{s(s+6)^2}$ Determine the value of centroid and the frequency at which the root locus branches cross the imaginary axis.	10	CO3
Q 8	The state equations of a control system are given below: Examine for complete state controllability, $\dot{X}_1 = -\frac{1}{T_1}x_1 + \frac{1}{T_1}u$ and $\dot{X}_2 = -\frac{1}{T_2}x_2 + \frac{1}{T_2}u$	10	CO4
	SECTION-C		
Q 9	Obtain the transfer function of the system using differential equation. Assume all initial conditions are zero. $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = \frac{du}{dt} + 3u$ Design the state model using direct decomposition method.	15	CO4
Q 10	NOTE: Attempt both the parts. (A). Determine the transfer matrix for the system given below	10+15	CO4+ CO3

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ -2 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} u(t) \qquad y = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

(B). The open loop transfer function of a feedback control system is given by, K

$$G(s)H(s) = \frac{K}{(s+1)(2s+1)(3s+1)}$$

Sketch the bode plot and determine the value of K such that the gain margin is 20 db.