Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Program: B Tech ECE Course: Digital Signal Processing

Course Code: ECEG2013

Nos. of page(s) : 3

Instructions:

- Attempt all questions as per the instruction.
- Assume any data if required and indicate the same clearly.
- Unless otherwise indicated symbols and notations have their usual meanings.
- Strike off all unused blank pages

SECTION A (20 Marks)

S. No.		Marks	CO
Q 1	Define causality and stability of LTI discrete-time system with mathematical relations.	4	CO1
Q 2	Define cross-correlation and auto-correlation sequence. Also write relation between linear convolution and correlation	4	CO1
Q 3	Compute 4-point DFT of the signal $x[n] = \{1, -1, -1, 0\}$ using decimation in time FFT algorithm.	4	CO2
Q 4	Define the following terms: Phase delay, Group delay, linear phase response.	4	CO3
Q 5	 (a) Draw the block diagram of the system that represented by the following difference equation: y[n]=b₀x[n]+b₁x[n-1]+a₁y[n-1] (b) Draw the magnitude characteristics of Chebyshev low pass filter (Type-I and Type-II) and label the specifications on its magnitude response plot. 	2+2	CO4
	SECTION B (40 Marks)	l	
Q 6	(a) Given sequence $x[k] = \begin{cases} 2; k=0, 1, 2\\ 1; k=3, 4\\ 0; otherwise \end{cases}$ Sketch the sequence $x[k]$ and the reverse sequence $x[-k]$, the shifted sequences $x[-k+2]$ and $x[-k-3]$. (b) Find the discrete time convolution sum of the following $y[n] = x[n] * u[n-2]$. Where $x[n] = 3^n u[-n+3]$.	4+4	C01
Q 7	Let X[k] be a 14-point DFT of sequence x[n]. the first eight samples are given by X[0] = 12, X[1]= $-1+3j$, X[2]= $3+4j$, X[3]= $1-5j$, X[4]= $-2+2j$, X[5]= $6+3j$, X[6]= $-2-3j$, X[7] = 10. Determine the remaining samples of X[k]. Evaluate the following function of x[n] without computing the IDFT of X[k].	8	CO2

Semester: IV Time 03 hrs. Max. Marks: 100

	(i) x[0] (ii) $\sum_{n=0}^{13} x[n]$ (iii) $\sum_{n=0}^{13} x[n] e^{\frac{j4\pi}{7}n}$ (iv) $\sum_{n=0}^{13} x[n] ^2$		
Q 8	(a) Explain how IIR digital filters are designed from analog filters (b) Consider the following Laplace transfer function: $H(s) = \frac{s+5}{(s+2)(s^2+3s+2)}$ Determine H(z) and the difference equation using the impulse invariant method if the sampling rate is 10 Hz.	3+5	CO3
Q 9	Given a filter transfer function, $H(z) = \frac{0.5(1-z^{-2})}{(1+1.3z^{-1}+0.36z^{-2})}$ (a) Realize the digital filter using direct form I and using direct form II; (b) Determine the difference equations for each implementation.	8	CO4
Q 10	Consider the system in Fig.1 with $h[n] = a^n u[n], -1 < a < 1$. Determine the response $y[n]$ of the system to the excitation $x[n] = u[n+5] \cdot u[n-10]$ x(n) $h(n)$ $fig.1$ $Consider the system shown in Fig.2. (a) Find the overall impulse response of the system h[n]. (b) Is this system causal? Under what condition would the system be stable? x[n] h[n] fig.2$	8	CO1

	SECTION-C (40 Marks)		
Q 11	A band pass filter with Butterworth magnitude-frequency response satisfies the following specifications: Passband: 0.3 – 3.4 kHz Stopband: 0 – 0.2 kHz and 4 – 8 kHz Pass band ripple= 3 dB Stop band attenuation = 25 dB Sampling frequency = 32 kHz Obtain a suitable transfer function for the filter using the bilinear transformation method and realize the filter in direct form-I and II. OR Design a 5-tap FIR band pass filter with a lower cutoff frequency of 1,600 Hz, an upper cutoff frequency of 1,800 Hz, and a sampling rate of 8,000 Hz using (a) Rectangular window function (b) Hamming window function.	20	CO3, CO4
Q 12	 In a speech recording system with a sampling rate of 10,000 Hz, the speech is corrupted by broadband random noise. To remove the random noise while preserving speech information, the following specifications are given: Speech frequency range 0–3,000 kHz Stopband range 4,000–5,000 Hz Passband ripple = 0.1 dB Stopband attenuation = 60 dB (a) Design the FIR filter to remove random noise with the above specifications using Kaiser Window method. (b) Determine the difference equation and realize the FIR filter with suitable structure. 	15+5	CO3, CO4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Program: B Tech ECE Course: Digital Signal Processing Course Code: ECEG2013 Nos. of page(s) : 3

Nos. of page(s)

- Instructions:
 - Attempt all questions as per the instruction.
 - Assume any data if required and indicate the same clearly.
 - Unless otherwise indicated symbols and notations have their usual meanings.
 - Strike off all unused blank pages

SECTION A (20 Marks)

S. No.		Marks	CO
Q 1	For each impulse response listed below, determine whether the corresponding system is causal and stable (a) $h[n]=2^nu[-n]$ and (b) $h[n]=e^{2n}u[n-1]$	4	CO1
Q 2	Find the response of $y[n] + y[n + 1] - 2y[n - 2] = u[n] + 2u[n - 2]$ for the following initial values $y[-1] = \frac{1}{2}$; $y[-2] = \frac{1}{4}$	4	CO1
Q 3	Find 4-point DFT of the following sequence $x[n] = \left(\frac{1}{2}\right)^n$	4	CO2
Q 4	Discuss in detail about frequency transformations.	4	CO3
Q 5	 (c) A discrete time system is operated on an input sequence to produce an output sequence according to some computation algorithm: y[n]=∑^M_{k=0} b_kx[n-k]+∑^N_{k=1} a_ky[n-k] Find its transfer function (d) Obtain the difference equation to represent the discrete time system of the Fig.1 given below 	2+2	CO4

Semester: IV Time 03 hrs. Max. Marks: 100

	$x(n) \xrightarrow{b_0} \xrightarrow{+} y(n)$ $x(n-1) \xrightarrow{z^{-1}} b_1$ $x(n-2) \xrightarrow{-} y(n-2)$ Fig.1 SECTION B (40 Marks)		
Q 6	Compute linear and circular convolution of the following sequences: $x[n]=[1,-2,3,-1] \land h[n]=\{3,2,1,0\}$. Both signals are defined for $0 \le n \le 3$	8	CO1
Q 7	(a) Compute the circular convolution of the sequences $x_1[n] = \{1, 2, 0, 1\}$ and $x_2[n] = \{2, 2, 1, 1\}$ using DFT approach. (b) If X[k] is the 5-point DFT of the sequence $x[n]=2\delta[n]+\delta[n-1]+\delta[n-3]$. What sequence $y[n]$ has a 5-point DFT $Y[k]=2X[k]\cos\left(\frac{6\pi k}{10}\right)$	4+4	CO2
Q 8	 (a) A second-order band pass filter is required to satisfy the following specifications: Sampling rate = 8,000 Hz 3 dB bandwidth: BW = 100 Hz Narrow passband centered at 2,000 Hz Zero gain at 0 Hz and 4,000 Hz. Find the transfer function and difference equation by the pole-zero placement method. (b) Find the order and poles of a low pass Butterworth filter that has a 3db bandwidth of 400 Hz and an attenuation of 20db at 1KHz 	4+4	CO3
Q 9	Given a fourth-order filter transfer function $H(z) = \frac{(0.343z^2 + 0.6859z + 0.343)(0.4371z^2 + 0.8742z + 0.4371)}{(z^2 + 0.7075z + 0.7313)(z^2 - 0.1316z + 0.1733)}$ (a) Realize the digital filter using the cascade (series) form via second order sections using the direct form II; (b) Determine the difference equations for implementation	8	CO4
Q 10	 Two finite duration sequences h₁[n] and h₂[n] of length 8 are sketched in Fig.2. they are related by a circular shift i.e. h₂[n]=h₁[(n-m)₈]. (a) What is the value of m and specify whether the magnitude of 8-point DFTs of h₁[n] and h₂[n] are equal. (b) Which of the following statement is correct? Justify your answer. (i) h₁[n] is better low pass filter than h₂[n] (ii) h₂[n] is better low pass filter than h₂[n] 	8	CO1, CO2

	$ \begin{array}{c} h_1[n] \\ $		
	OR Consider a system with input x[n] and output y[n]. the input-output relation for the system is defined by the following two properties: $y[n]-ay[n-1]=x[n] \land y[0]=1$ (a) Determine whether the system is time invariant. (b) Determine whether the system is linear.		
	SECTION-C (40 Marks)		
Q 11	 (a) Design a digital band pass filter using bilinear transformation with a Butterworth filter characteristics satisfies the following specifications: pass band edge frequencies: 200 Hz and 300 Hz; pass band edge frequencies: 50 Hz and 450 Hz; a passband ripple of 3 dB; stop-band attenuation of 20dB, and a sampling frequency of 1,000 Hz. (b) Determine difference equation and realize the above filter using direct form – I and II OR Determine the transfer function for a 7-tap FIR low pass filter with a cutoff frequency of 2,000 Hz and a sampling rate of 8,000 Hz using the frequency sampling method. Also, realize the filter structure using direct form-II. 	15+5	CO3, CO4
Q 12	 (a) Design a low pass digital FIR filter using Kaiser Window satisfying the specifications given below: Pass band cut-off frequency = 100 Hz. Stop band cut-off frequency = 200 Hz. Pass band ripple = 0.1dB Stop band attenuation = 20 dB and Sampling frequency = 1000 Hz. (b) Determine the difference equation of this filter and realize with suitable structure. 	15+5	CO3, CO4