Name: Enrolm	ame: nrolment No: UNIVERSITY WITH A PURPOSE					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
Course Progra Course Instruc	m:B.Tech. in Mining EngineeringTime:Code:PEMI 2007Max. N	03 hr	03 hrs.			
	SECTION A (Answer ALL)					
S. No.		Marks	CO			
Q1. a)	Define: Firedamp, Whitedamp, Stinkdamp, Blackdamp and Afterdamp.	5	C01			
b)	Identify the Sources of Moisture in Mines.	5	CO2			
c)	Explain Chezy-Darcy equation for Turbulent flow.	5	CO3			
d)	List the advantages of Boundary Ventilation System.	5	CO6			
Q2. a) b)	C J	73	CO1 CO2			
Q3. a) b)	State the CMRs for Splits, Brattice, Stoppings and Air-crossing in ventilation.Analyze the steps to increase the quantity of air flowing through mines.	6+4	CO5			
Q4.	Summarize the essential features of a good ventilation system.	10	CO6			
Q5. a) b)		4+6	CO4			
	OR					
Q6.	A mine is ventilated by a fan running at 300 RPM and generating a quantity of m ³ /min at 75 mm w.g. The fan absorbs 160 BHP. To increase the quantity of air fan is speeded up to 400 RPM. Calculate the new quantity, pressure generated BHP. Also, calculate the efficiency of the fan.	r, the 10	CO4			
	SECTION-C (Answer 7 and either 8 or 9)					
Q7. a)	flow through an underground Bord & Pillar district. Justify your statements.	10	CO5			
$\frac{b}{0}$		10 tor 10,10	CO6			
Q8. a) b)	Discuss the CMRs for Installation and Maintenance of Main Mechanical Ventila Two parallel splits A and B have a pressure of 500 Pa acting across them, cause		CO4			

	flow of 15 m ³ /s and 10 m ³ /s of air in split A and B, respectively. It is decided to put a Regulator in split B to decrease the quantity to 10 m ³ /s in split A. Calculate the quantity in split B after the installation of Regulator and size of the Regulator if surface fan pressure is 1 kPa.		
	OR		
Q9. a) b) c)	Differentiate between Axial Flow fans and Centrifugal fans. Illustrate the principles for the installation of the Booster fan. A mine fan produces a pressure of 500 Pa and passes 25 m ³ /s of air though the trunk roadway that has two splits at its end. Split A and split B are having 15 m ³ /s and 10 m ³ /s of air, respectively. It is decided to put a Booster fan at split B to increase the quantity upto 15 m ³ /s. Calculate the size/pressure of the Booster fan if the resistance of shaft and trunk roadway is 0.2 Ns ² m ⁻⁸ .	5+7+8	CO4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
Course: Progran Course (Instruct	n: B.Tech. in Mining Engineering Time Code: PEMI 2007 Max	ester: e: . Marks:	IV 03 hrs 100	i.
	SECTION A (Answer ALL)			
S. No.		M	arks	СО
Q1. a)	Define various Degree of Gassiness for a U/G Coal Mine.		5	C01
b)	Summarize the Chezy-Darcy equation.		5	CO2
c)	Identify the sources of heat from rocks.		5	CO3
d)	State the CMRs on Auxiliary Fans.		5	CO4
	SECTION B (Answer 2, 3, 4 and 5 or 6)			
Q2. a) b)	Define Methane Layering. Explain the factors on which the layering depends. List the physiological effects of CO in mines.		7+3	CO1
Q3. a) b)	Summarize the sources of Heat from rocks. Define SVP and Kata factor.		6+4	CO2
Q4. a) b)	Derive the equation of pressure loss for a steady, laminar flow statin conditions. What is the importance of Reynolds Number?		7+3	CO3
Q5. a) b)	Illustrate the factors for Natural Ventilation. Differentiate between Centrifugal and Axial flow fans.		6+4	CO4
	OR			

SECTION-C (Answer 7 and either 8 or 9)

10

CO4

Two vertical shafts each having a diameter of 5 m, and length of 250 m are connected by a level roadway of 3×5 m² cross section and 500 m long at bottom. The barometric pressure in the shaft is 101.3 kPa, average temperatures for the upcast and

downcast shafts are 304 K and 295 K respectively. Calculate the velocity of flow due

to natural ventilation ignoring shock loss.

Given: K(shaft)= $0.004 \text{ Ns}^2/\text{m}^8$ and K(level)= $0.01 \text{ Ns}^2/\text{m}^8$.

Q6.

Q7.	a)	State the Standards of Ventilation.	12	CO1
	b)	Describe the installation of a Booster fan.	8	CO4
Q8.	a)	Summarize the CMRs for installation of Brattice, Door, Stoppings and Air-crossing.	10	CO5
	b)	Select the essential features of a good ventilation system.	10	CO6
		OR		
Q9.	a)	Describe with sketches, various methods to ventilate the Headings in underground.	10	CO5
	b)	Analyse the Importance of and the Parameters to be measured in Ventilation Survey.	10	CO6