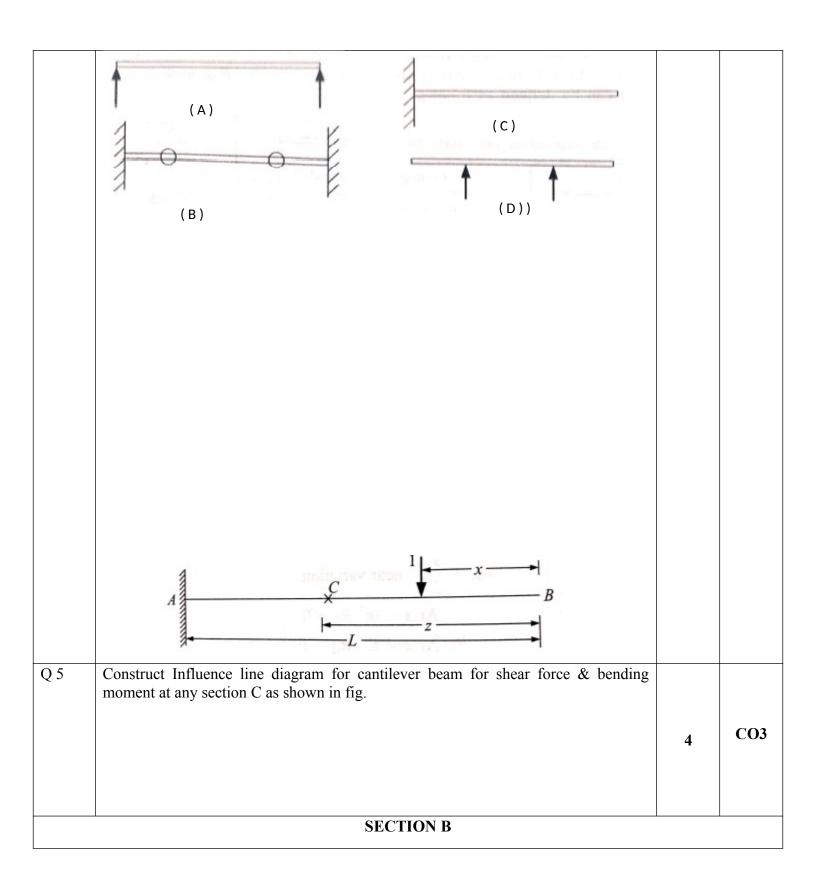
Name:

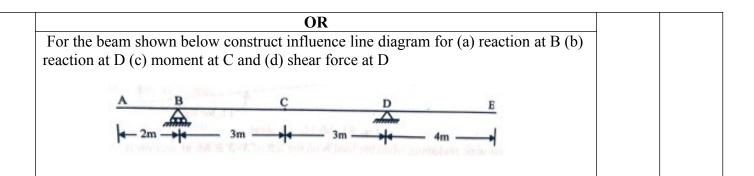
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019


Course: Structural Analysis - 1 Program: B. Tech, Civil Engg Course Code: CIVL 2002 Semester: IV Time 03 hrs.

Max. Marks: 100


Pages: 04 Instructions:

SECTION A

S. No.		Marks	CO
Q 1	Find the stability & determinacy or indeterminacy of the following structure.	4	CO2
Q 2	Find S (show) Find S (show)	4	CO1
Q 3	Determine the slope & deflection at the free end of a cantilever beam as shown in figure by moment area method. (Take EI =4000kNm²)	4	CO1
Q 4	Draw conjugate beam for following:	4	CO1

Q 6	Find the internal forces in the truss for members AB, AD, AC, EG, FG & FH		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO2
Q 7	A three hinged parabolic arch hinged at the supports and at the crown has a span of 24m and a central rise of 4m. It carries a concentrated load of 50 KN at 18m from left support and a uniformly distributed load of 30kn/m over the left-half portion. Determine the moment, thrust and radial shear at a section 6m from the left support.	10	CO2
Q 8	A pin jointed truss loaded with single load W= 100 KN as shown in fig. If the area of cross-section of all members shown in figure is 1000 mm ² , what is the vertical deflection of point C? Use unit load method. Take $E = 200 \text{ kN mm}^2$ for all members	10	CO1
Q 9	Using influence line diagrams determine the shear force and bending moment at section C in simply supported beam shown below. 10 kN/m 60 kN 80 kN 4 m 14 m 14 m	10	CO3

	SECTION-C		
Q 10	Determine the deflection at the free end of the overhang beam shown in figure below by unit load method. Assume uniform flexure rigidity. 50 kN 0.5 m 1.5 m	20	CO1
Q 11	Analyse either of the truss shown below by method of joints OR OR 80 kN 80 kN 80 kN 60 kN 80 kN 4 m 4 m 4 m 60 kN 80	20	CO2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

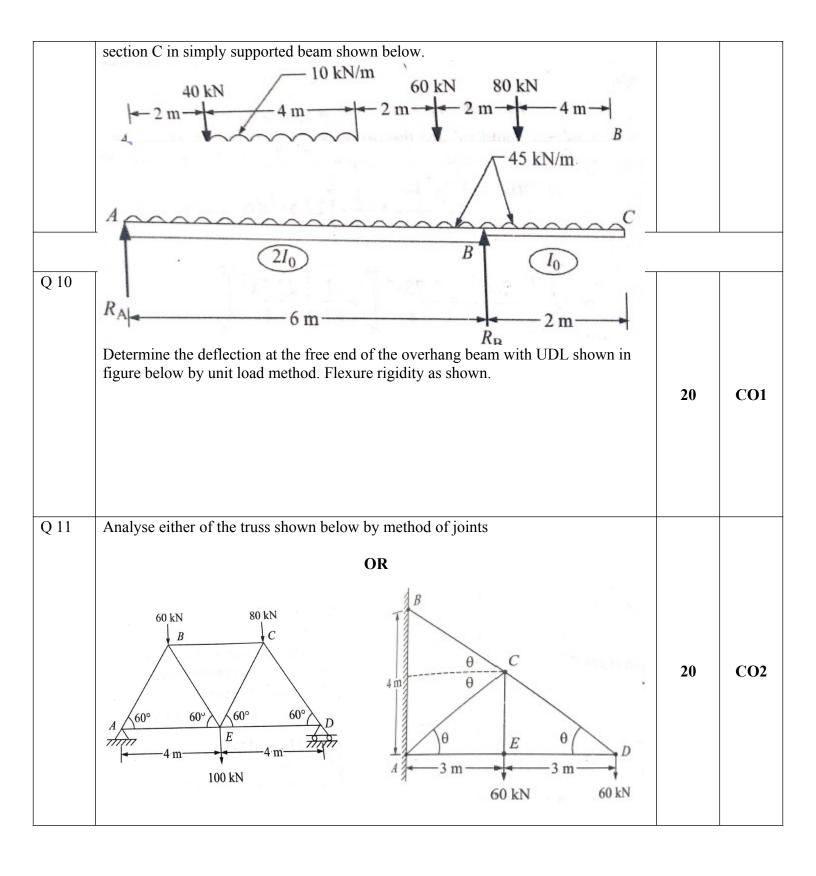
Course: Structural Analysis - 1 Program: B. Tech, Civil Engg

Course Code: CIVL 2002

Pages: 04

Semester: IV Time 03 hrs.

Max. Marks: 100


Instructions:

SECTION A

S. No.		Marks	CO
Q 1	Draw conjugate beam for following:	4	CO1

Q 2	Determine the slope & deflection at the free end of a cantilever beam subjected to uniformly distributed load over an entire span as shown in figure by moment area method.	4	CO1
Q 3	Construction Influence line diagram for simply supported beam for shear force & bending moment at any section C as shown in fig.	4	CO3
Q4	Find Slope & deflection at point B & C for cantilever beam with UDL using conjugate beam method as shown below	4	CO1
Q 5	Find the stability & determinacy or indeterminacy of the following structure. Fig-A Fig-B Fig-B Fig-B Fig-D Fig-D	4	CO2
	SECTION B		

Q 6	Find the internal forces in the truss for members AB, AD, AC, EG, FG & FH		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	CO2
Q 7	Determine the vertical deflection at free end and rotation at A in the overhanging beam shown below. Assume EI constant. Use Castigliano's Method	10	CO1
Q 8	A three hinged circular arch hinged at the supports and at the crown has a span of 40m and a central rise of 8m. It carries a concentrated load of 100 kN at right quarter span point and a uniformly distributed load of 20kN/m over the left-half portion. Determine the reactions at supports, normal thrust and shear at a section 10m from the left support.	10	CO2
Q 9	For typical overhang beam shown below, draw Influence line diagram for (a) reaction at A & B (b) Shear force at D & E (c) Bending moment at D & E	10	CO3
	OR		
	Using influence line diagrams determine the shear force and bending moment at		

