
Enrolment No

	(a) Compression ratio				
	(a) Air standard efficiency and				
	(b) Mean effective pressure of cycle.				
Q 7	(i) Compare the knocking in SI & CI Engines with help of p- θ diagram.		06	CO3	
	(ii) Compression ratio in compression Ignition increased to very high value. Justify the statement wi	-	04	CO3	
Q 8	A single jet carburetor is to supply 6 kg/min of air petrol of specific gravity 0.75. The air initially at 1 Assuming an isentropic coefficient of 1.4 for air, dete	.013 bar and 27° C.	10		
	 (i) The diameter of venturi if air speed is 9 coefficient for venturi is 0.85 (ii) The diameter of jet if pressure drop at the pressure drop at venturi and the discharge jet is 0.66. 	e jet is 0.8 times the			
	The four stroke petrol engine of Hindustan Ambassador has a capacity of 1489 cm ³ . It develops maximum power at 4200 rpm. The volumetric efficiency at this speed is 70% and air/fuel ratio is 13:1.			CO2	
	At peak power the theoretical air speed at throat is 90 m/s. The coefficient of discharge for venturi is 0.85 and that of main petrol jet is 0.66. The petrol surface is 6 mm below the throat at this engine				
	condition. Calculate the sizes of throat and ma gravity of petrol is 0.75 . Atmospheric pressure a 1.013 bar and 27° C.		10		
Attemnt	SECTION-C (40) all questions. There is internal choice in Q. No. 10(i).				
Q 9	(i) Explain typical Heat release rate model used to explain the stages of combustion in direct injection compression ignition engine.		10		
	 (ii) Explain the ignition delay with reference to CI engines. Explain the 6 important variables affecting the ignition delay with help of suitable diagrams if any. 		10	CO1/CO2	
Q 10	 (i) Following readings were taken during cylinder 4 –stroke oil engine; Cylinder bore Stroke length Indicated mean effective pressure Engine speed 	a test on single 20 cm 35 cm 7 bar 240 rpm	14	CO4	

Fuel oil used per hour	3.5 kg		
Calorific value of fuel	46000 kJ/kg		
Brake torque	450 Nm		
Mass of jacket cooling water per minute	5 kg		
Rise in temperature of jacket cooling water	40°C		
Mass of air supplied per minute	1.35 kg		
Temperature of exhaust gases	340°C		
Room temperature	15°C		
Mean specific heat of dry exhaust gases	1 kJ/kg		
Hydrogen in fuel on mass basis	13.5 %		
Specific heat of steam in exhaust gases	2.3 kJ/kgK		
Pressure of steam in exhaust gases	1.01325 bar		
Calculate the mechanical and indicated thermal e	fficiencies and bra	ake	
specific fuel consumption. Also draw up the heat ba and as percentage of heat supplied to engine w diagram. Analyse the heat balance and make your co	with help of Sank		
OR			
 (i) During the trial of a single cylinder, four st following results were obtained Cylinder diameter: 20 cm; 	troke oil engine,	the 14	CO4
Stroke: 40 cm;			
Indicated Mean effective pressure: 6 bar;			
Torque: 407 Nm;			
Speed: 250 rpm;			
Oil consumption: 4 kg/h;			
Calorific value of fuel: 43 MJ/kg; Cooling water flow rate: 4.5 kg/min;			
Air used per kg of fuel: 30 kg;			
Rise in cooling water temperature: 45 deg C;			
Temperature of exhaust gases: 420 deg C;			
Room temperature: 20 deg C;			
Mean specific heat of exhaust gas: 1 kJ/kg K;			
Specific heat of water: 4.18 kJ/kg K.			
Find the RD ID and Also draw up the heat hale	nce sheet in 1-1/h s	and	
Find the BP, IP and Also draw up the heat balance sheet in kJ/h and as percentage of heat supplied to engine with help of Sanky's			
diagram. Analyse the heat balance and make your conclusions.		, , , , , , , , , , , , , , , , , , , ,	
and running se the near surface and make you	ar concrusions.		
(ii) Determine the diameter of fuel orifice	for a 4-stroke eng	ine 6	CO2
	-		
developing 15 kw per cynnder at 2000 i			1
developing 15 kW per cylinder at 2000 r kg/kW-hr fuel of specific gravity 0.8	65. The duration	of	
kg/kW-hr fuel of specific gravity 0.8 injection is 30° crank travel. The fuel injection			

coefficient 0.9.	
------------------	--