Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course:Basic Electronics EngineeringSemester:IIProgram:B-Tech CSE-CCVT, BAO, MFT+MAD, G&G, BFSI+ECRA, IT InfraTime 03 hrs.Course Code:PHYS1003Max. Marks: 100

Instructions:

- 1. Draw suitable diagrams wherever required.
- 2. Your answer should be concise and to the point.

S. No.		Marks	CO
Q 1	Write the charge neutrality equation and law of mass equation for semiconductors.	4	C01
Q 2	Determine whether zener diode is ON or OFF for the circuit given below. $+ V_R -$ $V_z = 10 V$ $V_z = 10 V$ $P_{ZM} = 30 \text{ mW}$ $1.2 \text{ k}\Omega V_L$	4	C01
Q 3	Sketch the circuit for a PNP or NPN transistor in Common Base configuration. Mark I_C , I_B , I_E , V_{BE} and V_{CB} in the circuit.	4	CO2
Q 4	Differentiate between Bipolar Junction Transistor (BJT) and Junction Field Effect Transistor (JFET).	4	CO2
Q 5	Define the terms (i) CMRR (ii) Slew rate in view of Operational amplifier.	4	CO3
	SECTION B		
	(All questions are compulsory. Question no. 9 has internal choice)		
Q 6	 a) A sample of Si is doped with Phosphorous to a density of 10²¹/m³. What will be the conductivity of the Si sample? The electron mobility in Si is 0.18m²/V-s and hole mobility is 0.048m²/V-s. b) Explain the effect of biasing on the width of depletion region. 	[5+5]	CO1
Q 7	What do you mean by modulation and why it is required? Explain in brief the different types of modulation.	10	CO4
$\overline{Q8}$ a)	Solve the given clipper circuit to draw its output waveform assuming the diode as	10	C01

SECTION A

	expressions for their voltage gain?		
Q 11	a) Find the expression for the output voltage at points A, B, C and D in the circuit shown below.		
	$V_1 \longrightarrow V_1$	10	CO3
	b) Design an adder circuit using Operational amplifier to give the output $V_o = -(3V_1 + 4V_2 + 5V_3)$ where V ₁ , V ₂ and V ₃ are the inputs and R _f = 15kΩ	10	CO3
Q 12	a) Design a four stage Operational amplifier circuit in which the gains of the four stages are +21, -15, +11 and -24 respectively. Use a 240 k Ω feedback resistor for all the four circuits. What output voltage will result for an input of 160 μ V?	10	CO3
	b) Derive the relation for the output voltage of a three input inverting adder using operational amplifier.	10	CO3

Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

Course: Basic Electronics Engineering Program: B-Tech CSE-CCVT, BAO, MFT+MAD, G&G, BFSI+ECRA, IT Infra Course Code: PHYS1003

Semester: II Time 03 hrs. Max. Marks: 100

Instructions:

- 1. Answers should be concise and to the point.
- 2. Assume any missing data

S. No.		Marks	CO
Q 1	Plot the VI characteristics of a silicon and germanium diodes on the same scales. Clearly label the various parameters.	4	C01
Q 2	Show that the conductivity of intrinsic germanium at 300K is 0.0232 S/cm. Given that $n_i = 2.5 \times 10^{13} \text{ cm}^{-3}$, $\mu_n = 3800 \text{ cm}^2/\text{Volt-sec}$ and $\mu_p = 1800 \text{ cm}^2/\text{Volt-sec}$.	4	CO1
Q 3	Explain the physical structure of NPN transistor with respect to physical dimensions, doping and heat dissipation.	4	CO2
Q 4	Enumerate the principle differences between the working of a depletion type MOSFET and enhancement type MOSFET.	4	CO2
Q 5	Briefly explain the concept of virtual ground with respect to operation amplifiers.	4	CO3
	SECTION B (40 marks) All question of section B are compulsory	1 1	
Q 6	An a.c. voltage of peak value 20V and frequency 100 Hz is connected in series with a silicon diode and load resistance of 500 Ω . If the forward resistance of the diode is 10 Ω , find: (i) Peak current through diode, and (ii) Peak output voltage (iii) Output signal frequency. Also plot the output waveform across 500 Ω resistor.	10	CO1
Q 7	 (a) Explain the following terms with respect to a JFET. (i) Pinch-off Voltage (ii) V_{GS(off)}/V_{GScut-off} (b) A JFET to be used as an amplifier has following parameters: 	2	CO2
	$V_{GS(off)} = Vp = -25V$, $I_{DSS} = 20 \text{ mA}$. Plot the transconductance curve for the	8	

SECTION A (20 marks) All question of section A are compulsory

	device.		
Q 8	Draw the equivalent circuit of Si diode by using the first approximation under forward and reverse biased conditions Determine the current I for the configuration of figure given below using the first diode approximation. $ \begin{array}{c} 20V \\ \hline 1 \\ $	10	CO1
Q 9	Define modulation. What is the importance of modulation in communication system? Differentiate between AM and FM.	10	CO4
	SECTION C (40 marks) Question 11 has an internal choice in B part.		1
Q 10	a) Derive an expression for the output of op-amp based differentiator circuit. Design the differentiator circuit to obtain the following expression: $V_{out} = -2 \frac{dV_{i}}{dt}$	10	CO3
	b) What are the advantages and disadvantages of negative feedback if it is employed in the amplifier circuit?	5	CO3
	c) A single stage transistor amplifier has a open loop voltage gain of 600 without feedback and 50 with feedback. Calculate feedback factor (β).	5	
Q 11	a) Analyze the circuit given below and obtain the expression for output voltage: $ \begin{array}{c} $	10	CO3

