Name:	UNES
Enrolment No:	UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES
 End Semester Examination, May 2019

Course: Basic Electronics Engineering
Program: B-Tech CSE-CCVT, BAO, MFT+MAD, G\&G, BFSI+ECRA, IT Infra
Course Code: PHYS1003

Semester: II
Time 03 hrs.
Max. Marks: 100

Instructions:

1. Draw suitable diagrams wherever required.
2. Your answer should be concise and to the point.

SECTION A			
S. No.		Marks	CO
Q 1	Write the charge neutrality equation and law of mass equation for semiconductors.	4	CO1
Q 2	Determine whether zener diode is ON or OFF for the circuit given below.	4	CO1
Q 3	Sketch the circuit for a PNP or NPN transistor in Common Base configuration. Mark $\mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{E}}, \mathrm{V}_{\mathrm{BE}}$ and V_{CB} in the circuit.	4	CO2
Q 4	Differentiate between Bipolar Junction Transistor (BJT) and Junction Field Effect Transistor (JFET).	4	CO2
Q 5	Define the terms (i) CMRR (ii) Slew rate in view of Operational amplifier.	4	CO3

SECTION B

(All questions are compulsory. Question no. 9 has internal choice)

| Q 6 | a)A sample of Si is doped with Phosphorous to a density of $10^{21} / \mathrm{m}^{3}$. What will be
 the conductivity of the Si sample? The electron mobility in Si is $0.18 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$ and
 hole mobility is $0.048 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$.
 b) Explain the effect of biasing on the width of depletion region. | $\mathbf{[5 + 5]}$ | $\mathbf{C O 1}$ |
| :--- | :--- | :---: | :---: | :---: |
| Q 7 | What do you mean by modulation and why it is required? Explain in brief the
 different types of modulation. | $\mathbf{1 0}$ | $\mathbf{C O 4}$ |
| Q 8 a) | Solve the given clipper circuit to draw its output waveform assuming the diode as | $\mathbf{1 0}$ | $\mathbf{C O 1}$ |

SECTION-C
(Q10 is compulsory. Attempt either Q11 or Q12)

| Q 10 | a)Draw the circuit diagram of an operational amplifier to be used as an integrator.
 Also find the expression for the output voltage. | $\mathbf{1 0}$ | CO3 |
| :--- | :--- | :--- | :---: | :---: |
| | b) What are negative and positive feedbacks in amplifiers and derive respective | $\mathbf{1 0}$ | $\mathbf{C O 3}$ |

	expressions for their voltage gain?		
Q 11	a) Find the expression for the output voltage at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D in the circuit shown below. b) Design an adder circuit using Operational amplifier to give the output $V_{o}=-\left(3 V_{1}+4 V_{2}+5 V_{3}\right)$ where V_{1}, V_{2} and V_{3} are the inputs and $R_{f}=15 \mathrm{k} \Omega$	10	CO3 CO3
Q 12	a) Design a four stage Operational amplifier circuit in which the gains of the four stages are $+21,-15,+11$ and -24 respectively. Use a $240 \mathrm{k} \Omega$ feedback resistor for all the four circuits. What output voltage will result for an input of $160 \mu \mathrm{~V}$? b) Derive the relation for the output voltage of a three input inverting adder using operational amplifier.	10 10	CO3 CO3

Name: Enrolment No:			
Course Progra Course Instruc 1. 2.	UNIVERSITY OF PETROLEUM AND ENERGY STUD End Semester Examination, May 2019 Basic Electronics Engineering : B-Tech CSE-CCVT, BAO, MFT+MAD, G\&G, BFSI+ECRA, IT Infra Code: PHYS1003 ions: nswers should be concise and to the point. ssume any missing data	ES r: hrs. arks:	
SECTION A (20 marks) All question of section A are compulsory			
S. No.		Marks	CO
Q 1	Plot the VI characteristics of a silicon and germanium diodes on the same scales. Clearly label the various parameters.	4	CO1
Q 2	Show that the conductivity of intrinsic germanium at 300 K is $0.0232 \mathrm{~S} / \mathrm{cm}$. Given that $\mathrm{n}_{\mathrm{i}}=2.5 \times 10^{13} \mathrm{~cm}^{-3}, \mu_{\mathrm{n}}=3800 \mathrm{~cm}^{2} /$ Volt-sec and $\mu_{\mathrm{p}}=1800 \mathrm{~cm}^{2} /$ Volt-sec.	4	CO1
Q 3	Explain the physical structure of NPN transistor with respect to physical dimensions, doping and heat dissipation.	4	CO2
Q 4	Enumerate the principle differences between the working of a depletion type MOSFET and enhancement type MOSFET.	4	CO2
Q 5	Briefly explain the concept of virtual ground with respect to operation amplifiers.	4	CO 3
SECTION B (40 marks) All question of section B are compulsory			
Q 6	An a.c. voltage of peak value 20 V and frequency 100 Hz is connected in series with a silicon diode and load resistance of 500Ω. If the forward resistance of the diode is 10Ω, find: (i) Peak current through diode, and (ii) Peak output voltage (iii) Output signal frequency. Also plot the output waveform across 500Ω resistor.	10	CO1
Q 7	(a) Explain the following terms with respect to a JFET. (i) Pinch-off Voltage (ii) $V_{G S(\text { off })} / V_{G S c u t-\text { off }}$ (b) A JFET to be used as an amplifier has following parameters: $V_{G S(\text { off })}=V p=-25 V, I_{D S S}=20 \mathrm{~mA}$. Plot the transconductance curve for the	2 8	CO2

	device.		
Q 8	Draw the equivalent circuit of Si diode by using the first approximation under forward and reverse biased conditions Determine the current I for the configuration of figure given below using the first diode approximation.	$\mathbf{1 0}$	$\mathbf{C O 1}$
Q 9	Define modulation. What is the importance of modulation in communication system? Differentiate between AM and FM.	$\mathbf{1 0}$	$\mathbf{C O 4}$

SECTION C (40 marks) Question 11 has an internal choice in B part.

Q 10	a) Derive an expression for the output of op-amp based differentiator circuit. Design the differentiator circuit to obtain the following expression: $V_{\text {out }}=-2 \frac{d V_{i}}{d t}$ b) What are the advantages and disadvantages of negative feedback if it is employed in the amplifier circuit? c) A single stage transistor amplifier has a open loop voltage gain of 600 without feedback and 50 with feedback. Calculate feedback factor (β).	10 5 5	CO3 CO3
Q 11	a) Analyze the circuit given below and obtain the expression for output voltage:	10	CO3

