

	b) Use dunkerley's formula to find out the lowest natural frequency of the system shown in figure given below.		
Q 8	Determine the natural frequency of oscillation of the double pendulum as shown in figure. Find its value when $m_{1}=m_{2}=m, l_{1}=l_{2}=1$	10	$\mathrm{CO4}$
Q 9	The weight of an electric motor is 125 N and it runs at 1500 rpm . The armature	10	CO3

	weighs 35 N and its center of gravity lies 0.05 cm from the axis of rotation. The motor is mounted on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed force. Assume that the weight of the motor is equally distributed among the five springs. Determine stiffness of each spring, dynamic force transmitted to the base at operating speed and natural frequency of the system.		
SECTION-C			
Q 10	Analyze coordinate coupling using derivation, also find out the corresponding natural frequencies. Assume the suitable system and use its sketch to analyze the system.	20	CO5
Q 11	Derive the frequency equation and determine the natural frequency for five spring mass branched system shown in figure. The masses are moving in vertical direction only Or Derive the equation using Holzer's method to find the natural frequency of the multi degree of freedom system shown in Figure. Assume $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}=1 \mathrm{Kg}$ and $\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}_{3}=1 \mathrm{~N} / \mathrm{m}$.	20	CO 4

Name: Enrolment No:		15 UPES UNIVERSITY WITH A PURPOSE	
Cours Progr Cours Instru The Q	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019	I $\text { s: } 100$ s are exp s.	cted.
SECTION A			
S. No.		Marks	CO
Q 1	Draw FBD for free damped spring mass system for 2DoF and write equation of motion using Newton's method.	4	CO1
Q 2	State Rayleigh's energy method and find out natural frequency of a simple pendulum using it.	4	CO 2
Q 3	A shock absorber is to be designed so that its overshoot is 10% of the initial displacement when released. Determine the damping factor. If damping is reduced to one-half this value, what will be the overshoot?	4	CO3

Q 4	Define critically damped and overdamped vibration systems in short.	4	CO1
Q 5	What do you understand by generalized coordinates and influence coefficient matrix?	4	CO1
SECTION B			
Q 6	Derive the equation of motion of simple forced damped vibration system and analyze the complete response of the system and plot the different forces on the vector diagram	10	CO3
Q 7	Derive the equation of motion of the vibratory system shown in figure below and determine the natural frequency and amplitude ratio for corresponding frequency Use data given below, $\mathrm{K}_{1}=98000 \mathrm{~N} / \mathrm{m}, \mathrm{M}_{1}=196 \mathrm{~kg}, \mathrm{~K}_{2}=19600 \mathrm{~N} / \mathrm{m}, \mathrm{M}_{2}=49 \mathrm{~kg}$	10	CO3
Q 8	Derive the equation for two pendulums of length L as shown below, determine the natural frequency of each pendulum if $\mathrm{K}=100 \mathrm{~N} / \mathrm{m}, \mathrm{ml}=2 \mathrm{Kg}, \mathrm{m} 2=5 \mathrm{Kg}, \mathrm{L}=0.20 \mathrm{~m}$, $a=0.10 \mathrm{~m}$.	10	CO4
Q 9	Identify the terms involved in the equations of motion of one degree of freedom system as given by $5 x+3 \dot{x}+12 \ddot{x}=10 \sin \omega t$.	10	CO4

SECTION-C

Q 10	A car model as shown in figure simplified by considering its rigid body supported on rear and front springs, is considered to study vertical linear vibration and angular oscillations. Write equation of motion for the car and determine natural frequencies. Car parameters are $\mathrm{W}=150 \mathrm{~N}, \mathrm{~L}_{1}=1.35 \mathrm{~m}, \mathrm{~L}_{2}=1.65 \mathrm{~m}, \mathrm{~K}_{1}=360 \mathrm{~N} / \mathrm{m}, \mathrm{K}_{2}=370 \mathrm{~N} / \mathrm{m}$ and $\mathrm{I}_{\text {car }}=27 \mathrm{~m}^{4}$	$\mathbf{2 0}$	$\mathbf{C O 4}$
Q 11	Determine the lowest natural frequency of the system shown in figure by matrix method. In addition, explain the first mode, second mode and principal mode of vibration.	$\mathbf{2 0}$	$\mathbf{C O 4}$

