Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Introduction to Vibration Program: B.Tech ASE Course Code: ASEG316 Semester: VI Time 03 hrs. Max. Marks: 100

Instructions: Make use of sketches/plots to elaborate your answer. Brief and to the point, answers are expected. The Question paper has three sections: Section A, B and C, Section B and C have internal choices

SECTION A			
S. No.		Marks	CO
Q 1	Draw free body diagram for under-damped spring mass system for 2DoF and write equation of motion using Energy method.	4	CO1
Q 2	State Rayleigh's energy method and find out natural frequency of a simple pendulum using it.	4	CO2
Q 3	An electric motor is supported by eight springs of stiffness k each. The moment of inertia of the motor is I. Determine the natural frequency of the system. Refer the figure given below,	4	CO3
Q 4	Describe the steps involved in Matrix method for 3DoF spring mass system to find the natural frequency.	4	CO2
Q 5	A circular cylinder of mass 4kg and radius 15cm is connected by a spring of stiffness 4000 N/m as shown in Fig. it is free to roll on horizontal rough surface without slipping. Determine the natural frequency.	4	CO3

	weighs 35N and its center of gravity lies 0.05 cm from the axis of rotation. The motor is mounted on five springs of negligible damping so that the force transmitted is one-eleventh of the impressed force. Assume that the weight of the motor is equally distributed among the five springs. Determine stiffness of each spring, dynamic force transmitted to the base at operating speed and natural frequency of the system.		
	SECTION-C		
Q 10	Analyze coordinate coupling using derivation, also find out the corresponding natural frequencies. Assume the suitable system and use its sketch to analyze the system.	20	CO5
Q 11	Derive the frequency equation and determine the natural frequency for five spring mass branched system shown in figure. The masses are moving in vertical direction only $\begin{array}{c} \hline \\ \hline $	20	CO 4

$ \begin{bmatrix} m_1 \\ m_1 \\ m_2 \\ m_2 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \\ m_8 \\ m$	
₹ k₃ [] [] [] [] []	

Name: Enrolment No:		
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
End Semester Examination, May 2019		
Course: Introduction to vibration	Semester: VI	
Program: B.Tech. ASE	Time 03 hrs.	
Course Code: ASEG316	Max. Marks: 100	

Instructions: Make use of sketches/plots to elaborate your answer. Brief and to the point, answers are expected. The Question paper has three sections: Section A, B and C, Section B and C have internal choices.

SECTION A			
S. No.		Marks	CO
Q 1	Draw FBD for free damped spring mass system for 2DoF and write equation of motion using Newton's method.	4	CO1
Q 2	State Rayleigh's energy method and find out natural frequency of a simple pendulum using it.	4	CO2
Q 3	A shock absorber is to be designed so that its overshoot is 10% of the initial displacement when released. Determine the damping factor. If damping is reduced to one-half this value, what will be the overshoot?	4	CO3

Q 4	Define critically damped and overdamped vibration systems in short.	4	CO1
0.5	Willed de sous audentend her sous-lie de soudin-tes and influence soufficient		
Q 5	What do you understand by generalized coordinates and influence coefficient matrix?	4	CO1
	SECTION B		
Q 6	Derive the equation of motion of simple forced damped vibration system and analyze the complete response of the system and plot the different forces on the vector diagram	10	CO3
Q 7	Derive the equation of motion of the vibratory system shown in figure below and determine the natural frequency and amplitude ratio for corresponding frequency Use data given below, K ₁ = 98000 N/m, M ₁ =196 kg, K ₂ = 19600 N/m, M ₂ = 49 kg $\frac{k_1}{m_1} + \frac{k_2}{m_2} + \frac{k_2}{m_1} + \frac{k_2}{m_1$	10	CO3
Q 8	Derive the equation for two pendulums of length L as shown below, determine the natural frequency of each pendulum if K=100 N/m, m1= 2 Kg, m2= 5 Kg, L= 0.20 m, a= 0.10 m.	10	CO4

