

Name: Enrolme	ent No: UNIVERSITY WITH A PURPOSE	• • • • • •		
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019			
Course:Finite Element MethodSemesteProgram:M.Tech. Structural EngineeringTime 03				
Course Pages: 2	Code: CIVL 7014 Max. Marks	Max. Marks: 100		
Instruc	tions: Answer All Questons SECTION A			
S. No.		Marks	СО	
Q 1	State the methods of engineering analysis.	4	CO2	
Q 2	Write down the expression of shape function N and displacement u for one- dimensional bar element.	4	CO3	
Q 3	Explain Rayleigh-Ritz method.	4	CO2	
Q 4	Write down the stress strain relationship matrix for plane stress conditions.	4	CO1	
Q 5	Distinguish between potential energy function and potential energy functional	4	CO2	
	SECTION B			
Q 6	Using Rayleigh Ritz methods calculate the deflection at the middle and end for the following cantilever beam $ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	4 + 6 =10	CO4 CO1	
Q 7	Determine equations for Moment, shear and deflection for uniformly loaded simply supported beam with span lenhgth L. EI constant	5 +5=10	CO5 CO4	

Name: Enrolment No:UNIVERSITY WITH A P							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019							
Course:Finite Element MethodSemesterProgram:M.Tech. Structural EngineeringTime 03Course Code:CIVL 7014Max. MaxPages: 2		'S.					
Instruc	tions: Answer All Questons SECTION A						
0.11							
S. No.	Define share function	Marks	<u>CO</u>				
$\frac{Q1}{O2}$	Define shape function.	4	CO1				
Q 2 Q 3	State different phases of finite element method. Explain stiffness method.	4	CO2				
-	Name the weighted residual methods.	4	CO3				
Q 4 Q 5	What are the classifications of coordinates?	4	CO3				
QS	SECTION B	4	CO4				
	SECTION B						
Q 6	Explain Gauss Integration method with Suitable examples.	5 + 5 =10	CO2 CO4				
Q 7	Evaluate the displacement at node 1, 2. Take t=0.5 cm, E=2X10 ⁷ N/cm ² , $\mu = 0.27$ using plane stress condition.	5 +5 =10	CO1 CO4				
Q 8 Q 9	Determine equations for Moment, shear and deflection for Fixed beam with UDI and span lenhgth L. EI constant Explain Collocation Method with suitable exapmle.	+5=10	CO5 CO4				
× ′	OR Explain Rayleigh-Ritz Method with suitable exapmle.	5 + 5 =10	CO2 CO4				

SECTION-C					
Q 10	The three bar assemblage. A force of 2500N is applied in the x direction at node 2. The length of each element is 750 mm. Take $E = 4*10^5 \text{ N/mm}^2$. A = 600mm ² for elements 1 and 2.Take $E = 2*10^5 \text{ N/mm}^2$ and A = 1200mm ² for element 3.Nodes 1 and 4 are fixed. Calculate the following: Global stiffness matrix, Displacements of nodes 2 and 3. Reactions at nodes 1 and 4.	4 + 10+6= 20	CO3 CO5 CO1		
Q 11	Derive Three element Solution by Galerkin Method <u>OR</u> Derive Two element Solution by Galerkin Method	10 +4 +6 =20	CO3 CO1 CO5		