Name:

Enrolment No:

UNIVERSITY WITH A PURPOSE

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Mass Transfer Equipment Design and Separation Processes Program: M.Tech. Chem Engg (with spl in PDE)

Semester: II Time: 03 hrs Max. Marks: 100

Course Code: CHPD 7010 No of pages: 02

Instructions: Assume suitable data, if necessary.

SECTION A

S. No.	Answer any 5 questions. Each carries 12 marks. [12X5=60 Marks]	Marks	СО		
Q 1	Q1 Describe with flow diagram, Atmospheric Distillation Unit (ADU) of the refinery.				
Q.2	Elaborate on 'Equilibrium Solubility of Gases in Liquids'.	12	CO2		
Q.3	Discuss 'Choice of Solvent for Liquid-Liquid Extraction.	12	CO3		
Q.4	Explain the types of adsorption in detail.	12	CO4		
Q.5	Describe with neat sketch, simulation of moving beds for adsorption.	12	CO4		
Q.6	Define and explain osmosis and reverse osmosis. Enlist the applications of reverse osmosis along with advantages.	12	C05		

S. No.	Answer both the qu	estions.	[35+5=40]	Marks]					
Q.7	100 kg of a solution of acetic acid(C) and water (A) containing 30 wt% acid is to be extracted with fresh isopropyl ether (B) at 20°C, in a three stage cross-current liquid extraction. The quantity of solvent to be used in each stage is same i.e. 40 kg. Determine the quantities and compositions of the various streams. How much solvent would be required, in order to achieve same final raffinate concentration, in a single stage cross-current liquid extraction? The equilibrium tie line data at 20°C are as follows:								
	Water layer			Isopropyl ether layer					
	Wt % acetic acid, 100x Water		Isopropyl ether	Acetic acid, 100y* Water		Isopropyl ether		35	CO3
	0.69 1.41	98.1 97.1	1.2 1.5	0.18 0.37	0.5	99.3 98.9			
	2.89 6.42	95.5	1.6	0.79	0.8	98.4			
	13.30	91.7 84.4	1.9 2.3	1.93 4.82	1.0	97.1 02.0			
	25.50	71.1	3.4	4.62	1.9 3.9	93.3 84.7			
	36.70	58.9	4,4	21.60	6.9	71.5			
	44.30	45.1	10.6	31.10	10.8	58.1			
	46.40	37.1	16.5	36.20	15.1	48.7			
Q.8	An aqueous solution reduce the color by a solution. It is desired quantity of fresh can operation. Assume ec Equilibrium data at c kg carbon/kg soln Equilibrium color units of color/kg solution	dsorption l to reduc rbon req quilibrium onstant to 0 9.6	n. Initial cond the color b uired per the n condition.	centration of i	of color is 9.6 ts original va	units of c lue. Deter	olor / kg mine the	05	CO4