Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: B.Sc. Program: Mathematics Hons. Course Code: MATH1018 Semester: II Time 03 hrs. Max. Marks: 100

Instructions:

	SECTION A		
	(Attempt all questions)		
S. No.		Marks	CO
Q 1	Write the following numbers in ternary and hence identify whether they are the elements of Cantor's set or not a. $\frac{5}{9}$ b. $\frac{3}{10}$	4	CO1
Q 2	Give an example of a set which is not dense but fails to be nowhere dense.	4	CO1
Q 3	Find limit superior and limit inferior of the following sequences (i) $\left\{ \cos\left(\pi + \frac{1}{n}\right) \right\}$ (ii) $\left\{ \sin\left(\frac{(-1)^n \pi}{2} + \frac{1}{n}\right) \right\}$	4	C O 2
Q 4	Find all cluster points of the sequence $\left\{\frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\ldots+\frac{1}{\sqrt{2n-1}+\sqrt{2n+1}}\right)\right\}$	4	CO2
Q 5	Show that the sum of infinite series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$	4	CO3
	SECTION B		
	(Q6-Q8 are compulsory and Q9 has internal choice)		
Q 6	Prove that every subset of countable set is countable.	10	CO1
Q 7	If $\{a_n\}$ is a sequence of real numbers such that $0 < a_1 < a_2$ and $a_n = \frac{2a_{n-1}a_{n-2}}{a_{n-1}+a_{n-2}}$, then show that $\lim_{n \to \infty} a_n = \frac{3a_1a_2}{2a_1+a_2}$.	10	CO2
Q 8	Let $\{a_k\}$ be an unbounded strictly increasing sequence of positive real numbers and	10	CO2

	$x_k = \frac{a_{k+1} - a_k}{a_{k+1}}$. Then prove that for all $n \ge m$, $\sum_{k=m} x_k > 1 - \frac{a_m}{a_n}$.		
Q 9	$x_{k} = \frac{a_{k+1} - a_{k}}{a_{k+1}}$. Then prove that for all $n \ge m$, $\sum_{k=m}^{n} x_{k} > 1 - \frac{a_{m}}{a_{n}}$. Discuss the convergence of the series $1 + \frac{1}{2} \frac{x^{2}}{4} + \frac{1.3.5}{2.4.6} \frac{x^{4}}{8} + \frac{1.3.5.7.9}{2.4.6.8.10} \frac{x^{6}}{12} + \dots$ OR If $\sum a_{n}$ is a convergent series of real numbers then show that $\sum b_{n} = a_{n+1} - a_{n}$ (telescopic series) is also a convergent series.	10	CO3
	SECTION-C (Q10 is compulsory and Q11 has internal choice)		
	(Q10 is compulsory and Q11 has internal choice)		
Q 10	a. If $\sum S_n = 1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots, p > 0$, then find the conditions on <i>p</i> for (i) Absolute convergence of $\sum S_n$ (ii) Conditional convergence of $\sum S_n$	10+10	CO3
	b. Prove that there are countably infinite end points of all removed open intervals in Cantor's set.		CO1
Q 11	a. If $[a_n]$ and $[b_n]$ are two sequences of positive real numbers such that (i) $\frac{2}{a_{n+1}} = \frac{1}{a_n} + \frac{1}{b_n}$ (ii) $b_{n+1} = \frac{a_n + b_n}{2}$ If a_1 and b_1 are given, then show that both sequences are convergent and converge to the same limit. b. If $Y = \left\{\frac{x}{1+ x }, x \in R\right\}$, then find the set of all limit points of Y. OR	10+10	CO2 CO1
Q 11	a. Let the sequence $[a_n]$ defined by $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2019^2}{a_n} \right)$ such that $a_1 > 0$. Prove the following statements (i) $[a_n]$ is monotonic (ii) $[a_n]$ is bounded (iii) $\lim_{n \to \infty} a_n = 2019$ b. Let $S = in = 1i \infty \left(\left[0, \frac{1}{2n+1} \right] \cup \left[\frac{1}{2n}, 1 \right] \right)$. Then show that $[0, 1]i$ is an open set.	10+10	CO2 CO1

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: B.Sc. Program: Mathematics Hons. Course Code: MATH1018 Semester: II Time 03 hrs. Max. Marks: 100

Instructions:

SECTION A			
S. No.	(Attempt all questions)	Marks	СО
Q 1	Write the following numbers in ternary and hence identify whether they are the elements of Cantor's set or not a. $\frac{1}{4}$ b. $\frac{1}{3}$	4	C01
Q 2	Give an example of a set which is nowhere dense.	4	CO1
Q 3	Find limit superior and limit inferior of the following sequences (iii) $\left\{ \sin\left(\pi + \frac{1}{n}\right) \right\}$ (iv) $\left\{ \tan\left(\frac{(-1)^n \pi}{2} + \frac{1}{n}\right) \right\}$	4	CO2

Q 4	Find all cluster points of the sequence $\left\{ \left(\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right) \right\}$	4	CO2
Q 5	Show that the sum of infinite series $\frac{1}{1!} + \frac{1+2}{2!} + \frac{1+2+3}{3!} + = \frac{3e}{2}$	4	CO3
	SECTION B		
	(Q6-Q8 are compulsory and Q9 has internal choice)		
Q 6	 Let X = (0,1)(2,3) be an open set in R. Let f be a continuous function on X such that the derivative f'(x)=0 for all x. Then accept and reject the following statements with proper argument. a. Then the range of f has uncountable number of points b. Countably infinite number of points c. At most 2 points d. At most 1 point 	10	C01
Q 7	If $\{a_n\}$ is a sequence of real numbers such that $a_{n+1} = \sqrt{5+a_n}, a_1 = 0$, then prove that a_n in monotonic and bounded. Also, find the unique limit point of $\{a_n\}$.	10	CO2
Q 8	Let $\{a_k\}$ be an unbounded strictly increasing sequence of positive real numbers and $x_k = \frac{a_{k+1} - a_k}{a_{k+1}}$. Then prove that for all $n \ge m$, $\sum_{k=m}^n x_k > 1 - \frac{a_m}{a_n}$.	10	CO2
Q 9	$x_{k} = \frac{a_{k+1} - a_{k}}{a_{k+1}}$. Then prove that for all $n \ge m$, $\sum_{k=m}^{n} x_{k} > 1 - \frac{a_{m}}{a_{n}}$. Discuss the convergence of the series $1 + \frac{1}{2.4} + \frac{1.3.5}{2.4.6.8} + \frac{1.3.5.7.9}{2.4.6.8.10.12} + \dots$ OR If $\sum a_{n}^{2}$ is a convergent series of real numbers then show that $\sum \frac{a_{n}}{n}$ is also a convergent series.	10	CO3
	SECTION-C		
	(Q10 is compulsory and Q11 has internal choice)		
Q 10	 (i) Test the series ∑ S_n=x-x²/2+x³/3-x⁴/4+ then find the conditions on x for absolute convergence of series. (ii) Show that the collection of all sequences of 0s and 1s is uncountable and equivalent to P(N i. 	10+10	CO3
		10:10	CO1
Q 11	(a) If $ a_n $ and $ b_n $ are two sequences of positive real numbers such that (i) $a_{n+1} = \sqrt{a_n b_n}$ (ii) $b_{n+1} = \frac{a_n + b_n}{2}$ If a_1 and b_1 are given, then show that both sequences are convergent and they	10+10	CO2 CO1

	converge to the same limit.		
	(b) Using transfinite numbers show that line, plane and space are similar and have cardinality equal to the cardinality of continuum.		
	OR		
Q 11	(a) Let the sequence $[a_n]$ defined by $a_{n+1} = \frac{1}{2} \left(a_n + \frac{9}{a_n} \right)$ such that $a_1 > 0$. Prove the		
	following statements (i) $\begin{bmatrix} a_n \end{bmatrix}$ is monotonic		CO2
	(ii) $\begin{bmatrix} a_n \end{bmatrix}$ is bounded (iii) $\lim_{n \to \infty} a_n = 3$	10+10	
	(b) Let $A = \{1, 2,, 10\}$. If S is a subset of A, and let $i S \lor i$ denotes the		CO1
	number of elements in S. Then find $\sum_{S \subset A, S \neq \phi} (-1)^{iS \lor i} i$.		