Name: Enrolment No:			
Course Progra Course Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 B.Sc. : Mathematics Hons. Code: MATH1018	$\begin{aligned} & \text { ester: II } \\ & \text { e } 03 \mathrm{hrs} \\ & \text {. Marks } \end{aligned}$	
SECTION A(Attempt all questions)			
S. No.		Marks	CO
Q 1	Write the following numbers in ternary and hence identify whether they are the elements of Cantor's set or not a. $\frac{5}{9}$ b. $\frac{3}{10}$	4	CO1
Q 2	Give an example of a set which is not dense but fails to be nowhere dense.	4	CO1
Q 3	Find limit superior and limit inferior of the following sequences (i) $\left\{\cos \left(\pi+\frac{1}{n}\right)\right\}$ (ii) $\quad\left\{\sin \left(\frac{(-1)^{n} \pi}{2}+\frac{1}{n}\right)\right\}$	4	CO2
Q 4	$\begin{aligned} & \text { Find } \begin{array}{c} \text { all } \\ \left\{\frac{1}{\sqrt{ } n}\left(\frac{1}{\sqrt{1}+\sqrt{ } 3}+\frac{1}{\sqrt{3}+\sqrt{ } 5}+\ldots+\frac{\text { cluster }}{\sqrt{2 n-1}+\sqrt{2 n+1}}\right)\right\} \end{array} \end{aligned}$	4	CO2
Q 5	Show that the sum of infinite series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$	4	CO3
SECTION B(Q6-Q8 are compulsory and Q9 has internal choice)			
Q 6	Prove that every subset of countable set is countable.	10	CO1
Q 7	If $\left\{a_{n}\right\}$ is a sequence of real numbers such that $0<a_{1}<a_{2}$ and $a_{n}=\frac{2 a_{n-1} a_{n-2}}{a_{n-1}+a_{n-2}}$, then show that $\lim _{n \rightarrow \infty} a_{n}=\frac{3 a_{1} a_{2}}{2 a_{1}+a_{2}}$.	10	CO2
Q 8	Let $\left\{a_{k}\right\}$ be an unbounded strictly increasing sequence of positive real numbers and	10	CO 2

	$x_{k}=\frac{a_{k+1}-a_{k}}{a_{k+1}}$. Then prove that for all $n \geq m, \sum_{k=m}^{n} x_{k}>1-\frac{a_{m}}{a_{n}}$.		
Q 9	Discuss the convergence of the series $1+\frac{1}{2} \frac{x^{2}}{4}+\frac{1.3 .5}{2.4 .6} \frac{x^{4}}{8}+\frac{1.3 .5 .7 .9}{2.4 .6 .8 .10} \frac{x^{6}}{12}+\ldots$ OR If $\sum a_{n}$ is a convergent series of real numbers then show that $\sum b_{n}=a_{n+1}-a_{n}$ (telescopic series) is also a convergent series.	10	CO3
SECTION-C(Q10 is compulsory and Q11 has internal choice)			
Q 10	a. If $\sum S_{n}=1-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\ldots, p>0$, then find the conditions on p for (i) Absolute convergence of $\sum S_{n}$ (ii) Conditional convergence of $\sum S_{n}$ b. Prove that there are countably infinite end points of all removed open intervals in Cantor's set.	10+10	CO3 CO1
Q 11	a. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences of positive real numbers such that (i) $\frac{2}{a_{n+1}}=\frac{1}{a_{n}}+\frac{1}{b_{n}}$ (ii) $b_{n+1}=\frac{a_{n}+b_{n}}{2}$ If a_{1} and b_{1} are given, then show that both sequences are convergent and converge to the same limit. b. If $Y=\left\{\frac{x}{1+\|x\|}, x \in R\right\}$, then find the set of all limit points of Y. OR	10+10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} 1 \end{aligned}$
Q 11	a. Let the sequence $\left\{a_{n}\right\}$ defined by $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2019^{2}}{a_{n}}\right)$ such that $a_{1}>0$. Prove the following statements (i) $\left\{a_{n}\right\}$ is monotonic (ii) $\quad\left\{a_{n}\right\}$ is bounded (iii) $\lim _{n \rightarrow \infty} a_{n}=2019$ b. Let $S=i n=1 i \infty\left(\left[0, \frac{1}{2 n+1}\right] \cup\left[\frac{1}{2 n}, 1\right]\right)$. Then show that $[0,1] i$ is an open set.	10+10	CO 2 $\mathrm{CO1}$

Q 4	Find all cluster points of the sequence $\left\{\left(\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\ldots+\frac{1}{(2 n)^{2}}\right)\right\}$	4	CO2
Q 5	Show that the sum of infinite series $\frac{1}{1!}+\frac{1+2}{2!}+\frac{1+2+3}{3!}+\ldots=\frac{3 e}{2}$	4	CO3
SECTION B(Q6-Q8 are compulsory and Q9 has internal choice)			
Q 6	Let $X=(0,1)(2,3)$ be an open set in R. Let f be a continuous function on X such that the derivative $f^{\prime}(x)=0$ for all x. Then accept and reject the following statements with proper argument. a. Then the range of f has uncountable number of points b. Countably infinite number of points c. At most 2 points d. At most 1 point	10	CO1
Q 7	If $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n+1}=\sqrt{5+a_{n}}, a_{1}=0$, then prove that a_{n} in monotonic and bounded. Also, find the unique limit point of $\left\{a_{n}\right\}$.	10	CO2
Q 8	Let $\left\{a_{k}\right\}$ be an unbounded strictly increasing sequence of positive real numbers and $x_{k}=\frac{a_{k+1}-a_{k}}{a_{k+1}}$. Then prove that for all $n \geq m, \sum_{k=m}^{n} x_{k}>1-\frac{a_{m}}{a_{n}}$.	10	CO2
Q 9	Discuss the convergence of the series $1+\frac{1}{2.4}+\frac{1.3 .5}{2.4 .6 .8}+\frac{1 \cdot 3 \cdot 5 \cdot 7.9}{2 \cdot 4.6 \cdot \frac{1}{10.12}}+\ldots$ OR If $\sum a_{n}^{2}$ is a convergent series of real numbers then show that $\sum \frac{a_{n}}{n}$ is also a convergent series.	10	CO3
SECTION-C(Q10 is compulsory and Q11 has internal choice)			
Q 10	(i) Test the series $\sum S_{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ then find the conditions on x for absolute convergence of series. (ii) Show that the collection of all sequences of 0 s and 1 s is uncountable and equivalent to $\mathrm{P}(\mathrm{Ni}$.	10+10	CO
			CO1
Q 11	(a) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences of positive real numbers such that (i) $a_{n+1}=\sqrt{a_{n} b_{n}}$ (ii) $\quad b_{n+1}=\frac{a_{n}+b_{n}}{2}$ If a_{1} and b_{1} are given, then show that both sequences are convergent and they	10+10	CO2 CO1

	converge to the same limit. (b) Using transfinite numbers show that line, plane and space are similar and have cardinality equal to the cardinality of continuum. OR		
Q 11	(a) Let the sequence $\left\{a_{n}\right\}$ defined by $a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{9}{a_{n}}\right)$ such that $a_{1}>0$. Prove the following statements (i) $\left.\quad a_{n}\right\}$ is monotonic (ii) $\left\{a_{n}\right\}$ is bounded (iii) $\lim _{n \rightarrow \infty} a_{n}=3$ (b) Let $A=\{1,2, \ldots, 10\}$. If S is a subset of A, and let $i S \vee i$ denotes the number of elements in S. Then find $\sum_{S \subset A, S \neq \phi}(-1)^{i S \vee i} i$.	10+10	$\mathrm{CO} 2$ CO1

